PRELIMINARY INTERVIEW BOARD TERRITORIAL ARMY COMMISSION : 25 SEPTEMBER 2022 PAPER-1: REASONING & ELEMENTARY MATHEMATICS

Max Time : 2 Hours

(Please Read The Instructions Carefully) INSTRUCTIONS

Roll No.....

- 1. Paper–1 has two parts: Part I & Part II
 - (a) Part I : Reasoning (50 marks)
 - (b) Part II: Elementary Mathematics (50 marks)
- 2. Each section carries 50 objectives type of questions.
- 3. There will be four possible answers to every question. Candidates are required to fill correct answer in the OMR sheet with Black ball pen.
- 4. For each correct answer, 1 mark will be granted and 0.33 mark will be deducted for every wrong answer.
- 5. If a candidate gives more than one answer, it will be treated as a wrong answer and 0.33 mark will be deducted. There will be no penalty for questions left unanswered.
- 6. Candidates should not mark in the question paper. They can use blank pages provided in the question paper for rough work.
- 7. Paper 2 has part I & Part II. To be eligible to qualify, candidate must obtain minimum 40% marks each in Part I & II separately and a minimum of 50% aggregate in total.
- 8. This question paper contains 20 number of pages.

PART-1: REASONING

Direction: In each of the following questions, select the related word from the given alternatives:-

Q1.	Giant : Dwarf :: Genius : ?			
	(a) Wicked	(b) Gentle	(c) Idiot	(d) Tiny
Q2.	Forecast : Future :: Regret : a (a) Present	(b) Past	(c) Atone	(d) Sins
Q3.	Planet : Orbit :: Projectile : ? (a) Trace	(b) Milky Way	(c) Trajectory	(d) Path
Q4.	Pesticide : Crop :: Antiseptic (a) Clotting	c:? (b) Bandage	(c) Wound	(d) Bleeding
Q5.	Symphony : Composer :: Ant (a) Painter	iseptic: ? (b) Inventor	(c) Singer	(d) Writer

Direction In each of the following questions, there is a certain relationship between two given numbers on one side of :: and one number is given on another side of the same :: while another number is to be found from the given alternatives;-.

Q9.	1:1::25:?	(b) 6.102	(c) 1.020	(d) 240
Q8.	0.16: 0.0016: 1.02: ?	(b) 0.102	(a) 1 020	(d) 10 20
Q7.	49:81::100:?	(b) 144	(c) 169	(d) None of the above
Q6.	42 : 20 : : 64 : ? (a) 31	(b) 32	(c) 33	(d) 34

Direction In each of the following questions four words have been given out, out of which three are alike in some manner and the fourth one is different. Choose out the odd one.

Q10.	(a) Rhea	(b) Trout	(c) Lamprey	(d) Salmon
Q11.	(a) Commander	(b) Commodore	(c) Brigadier	(d) Admiral
Q12.	(a) Microscope	(b) Telescope	(c) Periscope	(d) Stethoscope

Q13.	(a) Thyroxin	(b) Adrenalin	(c) Iodine	(d) Insulin
Dire code	ction In these questions the l . You are required to detect th	etters in a word are replace ne coding pattern/ rule and	ed by certain other letters a answer the questions acco	according to a specific rule to form its ordingly.
Q14.	In a certain language, OPERA (a) JOWJTJCMF	ATION is written as NODQ (b) JOWJTHAKD	BUJPO. How is INVISIBLE (c) HMUHTJCMF	E written in the code? (d) HMUHTHAKD
Q15.	In a certain code language, P (a) KCDQTIPV	LEADING is written as FM (b) QDCKTIPV	HCQMFB. How is SHOUL (c) QDCKVPIT	DER written in the code? (d) TIPVQDCK
Q16.	In a certain code language, G (a) HNQYGT	GAMBLE is written as FBLC (b) EMMXDS	KF. How is FLOWER writt (c) GKPVFQ	en in the code? (d) GMPVDS
Dire the n	ctions: In these type of quest numerals following certain giv	tions generally a set, group ren conditions.	or series of numerals is g	iven and you are required to trace out
Q17.	Sam ranked 9 th from top and (a) 45	38 th from the bottom in the (b) 46	class. How many students (c) 47	are there in the class? (d) 48
Q18.	Manoj and Sachin are ranked	7 th and 11 th respectively fro	m top in a class of 31 studer	nts. What will be their respective ranks
	(a) 20 th and 24 th	(b) 24 th and 20 th	(c) 25 th and 21 th	(d) 26 th and 22 th
Q19.	In a row of boys, A is 15th from A. What is C's position from	om the left and B is 4th from the right?	n the right. There are three	boys between A and B. C is just left of
O 20.	Richard is 15 th from in a colu	(b) 10	c) 12 re as many behind him as th	(u) 15 here were in front. How many boys are
Q20.	there between Richard and th (a) 33	he 7 th boy from the end of th (b) 34	ne column? (c) 35	(d) None of these
Q21.	N rank 5th the class, S is 8^{th} f	rom the last. If T is 6^{th} after	N and just in the middle of	N and S, then how many students are
	(a) 23	(b) 24	(c) 25	(d) 26
Q22.	In a row of 21 girls when Mo	nica was shifted by four pla	ces towards the right, she b	ecame 12 th from the left end. What was
	(a) 8 th	(b) 10 th	(c) 12 th	(d) 14 th
Dire answ	ctions: In these type of quest rered in the code language.	tions some particular object	s are assigned code names	, then a question is asked that is to be
Q23.	If sand is called air, air is cal will a women draw water?	led plateau, plateau is calle	d well, well is called island	, island is called sky, then from where
	(a) island	(b) well	(c) sky	(d) air
Q24.	If cloud is called white, whi water, where will the birds f	te is called rain, rain is calle $\sqrt{2}$	ed green, green is called ai	r , air is called blue and blue is called
	(a) air	(b) blue	(c) cloud	(d) white
Q25.	If water is called food, food i (a) water	s called tree, tree is called sl (b) food	ky, sky is called wall, on wl (c) sky	hich of the following grows a fruit? (d) tree
Dire invol num	ctions: In this type you are pro lving calculation of an express erals in the given equation and	vided with substitutes for v sion or choosing the correct d then solve the question.	arious mathematical symbo / incorrect equation. You	ols or numerals, followed by a question are required to put in the real signs or
Q26.	If Q means to +, J means to x (a) 18	, T means - , K means ÷ , th (b) 31	nen 30 K 2 Q 3 J 6 T 5 = ? (c) 28	(d) 103
Q27.	If P denotes \div , Q denotes X, (a) 59	R denote +, and S denotes - (b) 53	-, then what is the value of (c) 63	18 Q 12 P 4 R 5 S 6? (d) 65
Q28.	If A stands for + B stands for (a) 50	- C stands for X, then what (b) 60	t is the value of (10 C 4) A (c) 56	(4 C 4) B 6 ? (d) 46
Dire age,	ctions: In each of the followin time, numbers etc. You are rec	g questions, clues are giver quired to analyse the whole	n regarding comparisons an information and answer th	mong set of persons, things, direction, e given question accordingly.

Q29. If a 1 mm thick paper is folded so that the area is halved at every fold, then what would be the thickness of the pile after

	50 folds? (a) 100 ki	? m		(b) 1000 km	(c) 1 million km	(d) 1 billion km
Q30.	A was b is 10 yea	orn 2 yea rs old. A	ars after h At what ag	is father's marriage, ge did the father get	his mother is 5 years younger the married?	nan his father, but 20 years old than A, who
	(a) 35 yea	ars		(b) 25 years	(c) 23 years	(d) 33 years
Q31.	A father back?	tells his	son "I wa	s of your present ag	e when you were born". If the fa	ther is 36 now, how old was the boy 5 years
	(a) 15 yea	ars		(b) 13 years	(c) 17 years	(d) 20 years
Q32.	A father (a) 15 yea	is now 3 ars	3 times old	d as his son. 5 years (b) 12 years	back, he was 4 times old as his s (c) 18 years	on. The age of the son (in years) is ? (d) 20 years
Q33.	A woma difference (a) 23 vez	n says, " ce betwe	'lf you rev en our ag	verse my own age the res is 1/11th of their (b) 34 years	e figures represents my husband son". The women's age is ? (c) 45 years	's age. He is, of course, senior to me and the
	(u) 25 yea			(b) 54 years		(u) oo yeurs
Q34.	In a grou	up of 15 Ind Engl	people, 7 ish both ?	read French, 8 read	English, while 3 of them read r	none of these two. How many of them read
	(a) 0			(b) 3	(C) 4	• (a) 5
Q35.	M went (a) Thurs	to movie day	es 9 days a	ago. She goes to the (b) Saturday	movies only on Thursdays. Wha (c) Sunday	at day of the week is today ? (d) Tuesday
Q36.	If 30th Ja (a) Sund	nuary 2 ay	.003 was T	Thursday what was t (b) Tuesday	the day on 2nd Mar 2003 ? (c) Thursday	(d) Saturday
Direct row-w	c tions: Ir wise or co	each of lumn w	the followise. Find o	wing questions, a m out this trend and ch	atrix of certain characters is giv noose the missing character acco	en. These characters follow a certain trend, rdingly
037						
Q37.	4	5	6			
	- 4	3	7			
	1	9	2			
	21	0	2			
	(a) 94	90	£	(b) 76	(c) 73	(d) 16
038						
Q 00.	963	2	844			
	464	2	903			
	101	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	$\overline{\mathbf{Q}}$	Y	
	(a) 1			(b) 2	(c) 3	(d) 4
Q39.						
	7	4	5			
	8	7	6			
	3	3	?			
	29	19	31			
	(a) 3		5	(b) 4	(c) 5	(d) 6
Q40.			1			
	42	44	38			
	23	55	28			
	37	?	39			
	(a) 22		,J	(b) 33	(c) 66	(d) 677

Directions: Each of these questions given below contains three elements. These elements may or may not have some interlinkage. Each group of elements may fit into one of these diagrams at (a), (b), (e) or (d). You have to indicate the group of elements which correctly fits into the diagrams.

3

Q41. Which of the following diagrams indicates the best relation between Doctors, Human Beings and Married People?

Q42. Which of the following diagrams indicates the best relation between Man, Worker and Garden?

Q43. Which of the following diagrams indicates the best relation between Males, Cousins and Nephews?

Directions: In each of the following questions, select a figure from amongst the four alternatives, which when placed in the blank space of figure (X) would complete the pattern

Q45. In the following, a set of figures carrying certain characters is given. Assuming that the characters follow a similar pattern, find the missing character.

(a) 28 (b) 30		(c) 35	(d) 27
---------------	--	--------	--------

Directions: In the following, series of numbers are given following a certain pattern. One term in the number series is wrong. Find the wrong term.

Directions: Choose the odd numeral pair/ group which is different from the others.

Q48. (a) 95 – 82	(b) 69 - 56	(c) 55 – 42	(d) 48 - 34
Q49. (a) 11 - 115	(b) 10 – 90	(c) 9 – 72	(d) 8 – 56
Q50. (a) 81 – 63	(b) 24 - 48	(c) 21 – 15	(d) 13 - 39

PART-II: ELEMENTARY MATHEMATICS

Q51.	A number, which divided remainder?	by 987, gives a remainder 59. Wl	nen the same number is	divided by 21 what is the
	(a) 21	(b) 19	(c) 17	(d) 15
Q52.	If a positive integer leaves ren number by 13?	mainder 28 when divided by 143, the	en what is the remainder ob	otained on dividing the same
	(a) 0	(b) 2	(c) 9	(d) 10
Q53.	$(N^{p-1} - 1)$ is a multiple of p, if	N is prime to p and p is a?		
	(a) Prime number	(b) Rational number	(c) Real number	(d) Composite number
Q54.	LCM of two numbers is 16 tin number?	mes their HCF. The sum of LCM and	l HCF is 850. If one number	r is 50, then what is the other
	(a) 800	(b) 1200	(c) 2400	(d) 1600
Q55.	The HCF of two numbers is 9	98 and their LCM is 2352. The sum of	the numbers may be?	
	(a) 1372	(b) 1398	(c) 1426	(d) 1484
Q56.	How many numbers between (a) 36	n 500 and 1000 are divisible by 13? (b) 37	(c) 38	(d) 39
Q57.	Which one of the following is	s a non-terminating and repeating de	ecimal?	100
	(a) $\frac{13}{8}$	(b) $\frac{3}{16}$	(c) $\frac{3}{11}$	(d) $\frac{137}{25}$
Q58.	Which among the following i	is the largest?		10
	(a) $\frac{7}{9}$	(b) $\frac{11}{14}$	(c) $\frac{-5}{4}$	(d) $\frac{10}{13}$
Q59.	What is the square root of 9 + (a) $1 + 2\sqrt{2}$	$-2\sqrt{14}$? (b) $\sqrt{3} + \sqrt{6}$	(c) $\sqrt{2} + \sqrt{7}$	(d) $\sqrt{2} + \sqrt{5}$
Q60.	What is the smallest number (a) 39	that must be added to 1780 to make (b) 49	it perfect square? (c) 59	(d) 69
Q61.	If salary of X is 20% more that (a) 25	n salary of Y, then by how much per (b) 20	centage is salary of Y less the contract of $\frac{50}{2}$	han X? (d) $\frac{65}{4}$
Q62.	A student has to secure 40% of	of marks to pass an exam. He gets or	o ly 45 marks and fails by 5	4 marks. The maximum marks
	are? (a) 120	(b) 125	(c) 130	(d) 150
Q63.	What is the number which hat (a) 3	as to be added to each term of the rat (b) 5	io 49 : 68, so that it become (c) 8	s 3 : 4? (d) 9
Q64.	The sum of the age of a father	and the age of a son is 75 years. If th	e product of their ages befor	re 5 years was 750, then what
	(a) 60	(b) 55	(c) 52	(d) 50
Q65.	The fourth proportional to 7, (a) 16	11, 14 is (b) 18	(c) 20	(d) 22
Q66.	The average weight of a class average weight of the girls ?	s of 15 boys and 10 girls is 38.4 kg. If	the average weight of the b	oys is 40 kg, then what is the
	(a) 36.5 kg	(b) 35 kg	(c) 36 kg	(d) 34.6 kg
Q67.	In a class of 100 students, the class is 72, then what is the av	re are 70 boys whose average marks verage marks of the girls? (b) 65	in a subject are 75. If the av	verage marks of the complete
069	The sum of two numbers is 7	and the sum of their equares is 25. T	be product of the two pum	hor is?
Q00.	(a) 6	(b) 10	(c) 12	(d) 15
Q69.	The sum which amounts to R (a) Rs. 285	s 364.80 in 8 years at 3.5% simple int (b) Rs. 280	erest per annum is? (c) Rs. 275	(d) Rs. 270
Q70.	When an article is sold at 20% (a) Rs. 25	6 discount, the selling price is Rs 24.(b) Rs. 23	What is the selling price wh (c) Rs. 21	nen the discount is 30% ? (d) Rs. 20

Q71. By giving 25% discount a trader earns 25% profit. If he sells the item at 10% discount, what is the profit?

	(a) 10%	(b) 40%	(c) 45%	(d) 50%
Q72.	A man buys 200 oranges for l (a) 10	Rs. 1000. How many oranges for Rs 1 (b) 14	.00 can be sold so that his p (c) 16	rofit percentage is 25% ? (d) 20
Q73.	A car is travelling at a consta- (a) 165 kms	nt rate of 45 km/h. The distance trav (b) 150 kms	elled by car from 1040 AM (c) 120 kms	to 1 PM is ? (d) 105 kms
Q74.	A man rows downstream 32	kms and 14 kms upstream, and he ta	kes 6 hours to cover each c	istance. What is the speed of
	(a) 0.5 km/h	(b) 1 km/h	(c) 1.5 km/h	(d) 2 km/h
Q75.	A boy went to his school at t	he speed of 12 km/h and returned	to his house at the speed o	f 8 km/h. If he has taken 50
	minutes for the whole journe (a) 4 km	y, what was the total distance walked (b) 8 km	d ? (c) 16 km	(d) 20 km
Q76.	A can finish a work in 15 day share of C is ?	ys, B in 20 days and C is 25 days. Al	l these three worked toget	her and earned Rs. 4700. The
	(a) Rs 1200	(b) Rs 1500	(c) Rs 1800	(d) Rs 2000
Q77.	If 5 tractors can plough 5 hec in 50 days ?	tares of land in 5 days, then what is	the number of tractors req	uired to plough 100 hectares
	(a) 100	(b) 20	(c) 10	(d) 5
Q78.	What is the simplified form of (a) $4\sqrt{2}$	f $9\sqrt{2} - \sqrt{8} - 4\sqrt{2}$? (b) $3\sqrt{2}$	(c) 2√2	(d) 2
Q79.	The shadow of a pole 6 mtr h of the tree?	igh is 15 mtr long and at the same tim	ne the shadow of a tree is 25	mtr long. What is the height
	(a) 21 mtr	(b) 10 mtr	(c) 35 mtr	(d) 41 mtr
Q80.	If one-third of a two-digital n (a) 6	umber exceeds its one-fourth by 8, th (b) 13	hen what is the sum of the (c) 15	digits of the number? (d) 17
Q81.	A number consists of two dig	its whose sum is 8. If 18 is added to t	he number, the digits are re	eversed. The number is equal
	(a) 26	(b) 35	(c) 53	(d) 62
Q82.	Which of the following stater (a) Its value is 0 (c) Its value is less than 1	nent is true in respect of the expressi	on sin 31° + sin 32° ? (b) Its value is 1 (d) Its value is greater tha	n 1
Q82. 083.	Which of the following stater (a) Its value is 0 (c) Its value is less than 1 If $1 + \tan \theta = \sqrt{2}$, then what is	nent is true in respect of the expressi the value of $\cot \theta - 1$?	on sin 31° + sin 32° ? (b) Its value is 1 (d) Its value is greater tha	n 1
Q82. Q83.	Which of the following stater (a) Its value is 0 (c) Its value is less than 1 If 1 + tan $\theta = \sqrt{2}$, then what is (a) $\frac{1}{\sqrt{2}}$	nent is true in respect of the expressi the value of $\cot \theta - 1$? (b) $\sqrt{2}$	on sin 31° + sin 32° ? (b) Its value is 1 (d) Its value is greater tha (c) 2	n 1 (d) $\frac{1}{2}$
Q82. Q83. O84.	Which of the following stater (a) Its value is 0 (c) Its value is less than 1 If 1 + tan $\theta = \sqrt{2}$, then what is (a) $\frac{1}{\sqrt{2}}$ If tan $\theta = 3$ and θ is acute, th	nent is true in respect of the expressi the value of $\cot \theta - 1$? (b) $\sqrt{2}$ nen what is the value of $\sin \theta$?	on sin 31° + sin 32° ? (b) Its value is 1 (d) Its value is greater tha (c) 2	n 1 (d) $\frac{1}{2}$
Q82. Q83. Q84.	Which of the following stater (a) Its value is 0 (c) Its value is less than 1 If 1 + tan $\theta = \sqrt{2}$, then what is (a) $\frac{1}{\sqrt{2}}$ If tan $\theta = 3$ and θ is acute, th (a) $-\frac{3}{5}$	the value of $\cot \theta - 1$? (b) $\sqrt{2}$ then what is the value of $\sin \theta$? (b) $\frac{3}{5}$	on sin 31° + sin 32° ? (b) Its value is 1 (d) Its value is greater tha (c) 2 (c) $\frac{4}{5}$	n 1 (d) $\frac{1}{2}$ (d) $\frac{-4}{5}$
Q82. Q83. Q84. Q85.	Which of the following stater (a) Its value is 0 (c) Its value is less than 1 If $1 + \tan \theta = \sqrt{2}$, then what is (a) $\frac{1}{\sqrt{2}}$ If $\tan \theta = \underline{3}$ and θ is acute, th (a) $-\frac{3}{5}$ What is sin 25° sin 35° sec 65°	the value of $\cot \theta - 1$? (b) $\sqrt{2}$ the value of $\sin \theta$? (b) $\frac{3}{5}$ sec 55° equal to	on sin 31° + sin 32° ? (b) Its value is 1 (d) Its value is greater tha (c) 2 (c) $\frac{4}{5}$	n 1 (d) $\frac{1}{2}$ (d) $\frac{-4}{5}$
Q82. Q83. Q84. Q85.	Which of the following stater (a) Its value is 0 (c) Its value is less than 1 If 1 + tan $\theta = \sqrt{2}$, then what is (a) $\frac{1}{\sqrt{2}}$ If tan $\theta = 3$ and θ is acute, th (a) $-\frac{3}{5}$ What is sin 25° sin 35° sec 65° (a) -1	the value of $\cot \theta - 1$? (b) $\sqrt{2}$ the value of $\sin \theta$? (b) $\frac{3}{5}$ sec 55° equal to (b) 0	on sin 31° + sin 32° ? (b) Its value is 1 (d) Its value is greater that (c) 2 (c) $\frac{4}{5}$ (c) $\frac{1}{2}$	n 1 (d) $\frac{1}{2}$ (d) $\frac{-4}{5}$ (d) 1
Q82. Q83. Q84. Q85. Q86.	Which of the following stater (a) Its value is 0 (c) Its value is less than 1 If 1 + tan $\theta = \sqrt{2}$, then what is (a) $\frac{1}{\sqrt{2}}$ If tan $\theta = 3$ and θ is acute, th (a) $-\frac{3}{5}$ What is sin 25° sin 35° sec 65° (a) - 1 Which one of the following th (a) $(3, 4, 5)$	the value of $\cot \theta - 1$? (b) $\sqrt{2}$ the value of $\sin \theta$? (b) $\frac{3}{5}$ sec 55° equal to (b) 0 tiples does not represent the sides of (b) (4, 7, 10)	on sin 31° + sin 32°? (b) Its value is 1 (d) Its value is greater that (c) 2 (c) $\frac{4}{5}$ (c) $\frac{1}{2}$ a triangle? (c) (3, 6, 8)	n 1 (d) $\frac{1}{2}$ (d) $\frac{-4}{5}$ (d) 1 (d) (2, 3, 6)
Q82. Q83. Q84. Q85. Q86. Q87.	Which of the following stater (a) Its value is 0 (c) Its value is less than 1 If $1 + \tan \theta = \sqrt{2}$, then what is (a) $\frac{1}{\sqrt{2}}$ If $\tan \theta = 3$ and θ is acute, the (a) $-\frac{3}{5}$ What is sin 25° sin 35° sec 65° (a) -1 Which one of the following the (a) $(3, 4, 5)$ A round balloon of unit radii distance of the centre of the balance	the value of $\cot \theta - 1$? (b) $\sqrt{2}$ then what is the value of $\sin \theta$? (b) $\frac{3}{5}$ sec 55° equal to (b) 0 tiples does not represent the sides of (b) (4, 7, 10) the subtends an angle of 90 at the equal alloon from point A?	on sin 31° + sin 32°? (b) Its value is 1 (d) Its value is greater that (c) 2 (c) $\frac{4}{5}$ (c) $\frac{1}{2}$ a triangle? (c) (3, 6, 8) e of an observer standing a	n 1 (d) $\frac{1}{2}$ (d) $\frac{-4}{5}$ (d) 1 (d) (2, 3, 6) tt a point, say A. What is the
Q82. Q83. Q84. Q85. Q86. Q87.	Which of the following stater (a) Its value is 0 (c) Its value is less than 1 If $1 + \tan \theta = \sqrt{2}$, then what is (a) $\frac{1}{\sqrt{2}}$ If $\tan \theta = \underline{3}$ and θ is acute, the (a) $-\frac{3}{5}$ What is $\sin 25^{\circ} \sin 35^{\circ} \sec 65^{\circ}$ (a) -1 Which one of the following the (a) $(3, 4, 5)$ A round balloon of unit radii distance of the centre of the ballocentre of the balloce	the value of $\cot \theta - 1$? (b) $\sqrt{2}$ then what is the value of $\sin \theta$? (b) $\frac{3}{5}$ sec 55° equal to (b) 0 tiples does not represent the sides of (b) (4, 7, 10) us subtends an angle of 90 at the eye alloon from point A? (b) $\sqrt{2}$	on sin 31° + sin 32°? (b) Its value is 1 (d) Its value is greater that (c) 2 (c) $\frac{4}{5}$ (c) $\frac{1}{2}$ a triangle? (c) (3, 6, 8) e of an observer standing at (c) 2	n 1 (d) $\frac{1}{2}$ (d) $\frac{-4}{5}$ (d) 1 (d) (2, 3, 6) a point, say A. What is the (d) $\frac{1}{2}$
Q82. Q83. Q84. Q85. Q86. Q87. Q88.	Which of the following stater (a) Its value is 0 (c) Its value is less than 1 If $1 + \tan \theta = \sqrt{2}$, then what is (a) $\frac{1}{\sqrt{2}}$ If $\tan \theta = \underline{3}$ and θ is acute, th (a) $-\frac{3}{5}$ What is sin 25° sin 35° sec 65° (a) -1 Which one of the following th (a) $(3, 4, 5)$ A round balloon of unit radii distance of the centre of the b (a) $1\sqrt{2}$ What is the angle of elevation (a) 30°	the value of $\cot \theta - 1$? (b) $\sqrt{2}$ then what is the value of $\sin \theta$? (b) $\frac{3}{5}$ sec 55° equal to (b) 0 tiples does not represent the sides of (b) (4, 7, 10) us subtends an angle of 90 at the eye alloon from point A? (b) $\sqrt{2}$ the of the sum when the shadow of a per- (b) 45°	on sin 31° + sin 32° ? (b) Its value is 1 (d) Its value is greater that (c) 2 (c) $\frac{4}{5}$ (c) $\frac{1}{2}$ a triangle? (c) (3, 6, 8) e of an observer standing at (c) 2 ole is $\sqrt{3}$ times the length of (c) 60°	n 1 (d) $\frac{1}{2}$ (d) $\frac{-4}{5}$ (d) 1 (d) (2, 3, 6) (d) (2, 3, 6) (d) $\frac{1}{2}$ f the pole? (d) 75°
Q82. Q83. Q84. Q85. Q86. Q87. Q88. Q88. Q89.	Which of the following stater (a) Its value is 0 (c) Its value is less than 1 If $1 + \tan \theta = \sqrt{2}$, then what is (a) $\frac{1}{\sqrt{2}}$ If $\tan \theta = 3$ and θ is acute, the (a) $-\frac{3}{5}$ What is sin 25° sin 35° sec 65° (a) -1 Which one of the following the (a) $(3, 4, 5)$ A round balloon of unit radii distance of the centre of the be (a) $1\sqrt{2}$ What is the angle of elevation (a) 30° If $\beta = 30^\circ$, then what is the value	the value of $\cot \theta = 1$? (b) $\sqrt{2}$ then what is the value of $\sin \theta$? (b) $\frac{3}{5}$ sec 55° equal to (b) 0 tiples does not represent the sides of (b) (4, 7, 10) us subtends an angle of 90 at the even alloon from point A? (b) $\sqrt{2}$ the of the sum when the shadow of a per- (b) 45° ue of tan α ?	on sin 31° + sin 32° ? (b) Its value is 1 (d) Its value is greater that (c) 2 (c) $\frac{4}{5}$ (c) $\frac{1}{2}$ a triangle? (c) (3, 6, 8) e of an observer standing at (c) 2 ole is $\sqrt{3}$ times the length of (c) 60°	n 1 (d) $\frac{1}{2}$ (d) $\frac{-4}{5}$ (d) 1 (d) (2, 3, 6) (d) (2, 3, 6) (d) $\frac{1}{2}$ f the pole? (d) 75°
Q82. Q83. Q84. Q85. Q86. Q87. Q88. Q88. Q89.	Which of the following stater (a) Its value is 0 (c) Its value is less than 1 If $1 + \tan \theta = \sqrt{2}$, then what is (a) $\frac{1}{\sqrt{2}}$ If $\tan \theta = \underline{3}$ and θ is acute, th (a) $-\frac{3}{5}$ What is sin 25° sin 35° sec 65° (a) -1 Which one of the following th (a) $(3, 4, 5)$ A round balloon of unit radii distance of the centre of the b (a) $1\sqrt{2}$ What is the angle of elevation (a) 30° If $\beta = 30^{\circ}$, then what is the valiant of $\frac{1}{2}$	the value of $\cot \theta - 1$? (b) $\sqrt{2}$ then what is the value of $\sin \theta$? (b) $\frac{3}{5}$ sec 55° equal to (b) 0 tiples does not represent the sides of (b) (4, 7, 10) the subtends an angle of 90 at the even alloon from point A? (b) $\sqrt{2}$ the of the sum when the shadow of a per- (b) 45° the of tan α ? (b) $\frac{1}{3}$	on sin 31° + sin 32°? (b) Its value is 1 (d) Its value is greater that (c) 2 (c) $\frac{4}{5}$ (c) $\frac{1}{2}$ a triangle? (c) (3, 6, 8) e of an observer standing at (c) 2 ole is $\sqrt{3}$ times the length of (c) $\frac{60^{\circ}}{4}$	n 1 (d) $\frac{1}{2}$ (d) $\frac{-4}{5}$ (d) 1 (d) (2, 3, 6) a point, say A. What is the (d) $\frac{1}{2}$ f the pole? (d) 75° (d) $\frac{1}{5}$
Q82. Q83. Q84. Q85. Q86. Q87. Q88. Q89. Q90.	Which of the following stater (a) Its value is 0 (c) Its value is less than 1 If $1 + \tan \theta = \sqrt{2}$, then what is (a) $\frac{1}{\sqrt{2}}$ If $\tan \theta = \underline{3}$ and θ is acute, the (a) $-\frac{3}{5}$ What is sin 25° sin 35° sec 65° (a) -1 Which one of the following the (a) $(3, 4, 5)$ A round balloon of unit radialistance of the centre of the ball (a) $1\sqrt{2}$ What is the angle of elevation (a) $\frac{1}{2}$ From the top of a building 9 respectively. What is the heige (a) $30\sqrt{3}$ mtr	the value of $\cot \theta - 1$? (b) $\sqrt{2}$ then what is the value of $\sin \theta$? (b) $\frac{3}{5}$ sec 55° equal to (b) 0 tiples does not represent the sides of (b) (4, 7, 10) us subtends an angle of 90 at the eva alloon from point A? (b) $\sqrt{2}$ the of the sum when the shadow of a performance of the sum when the shadow of a performance of the sum of the shadow of a performance of the sum of the shadow of a performance of the sum of the shadow of the	on sin 31° + sin 32° ? (b) Its value is 1 (d) Its value is greater that (c) 2 (c) $\frac{4}{5}$ (c) $\frac{1}{2}$ a triangle? (c) (3, 6, 8) e of an observer standing at (c) 2 ole is $\sqrt{3}$ times the length of (c) $\frac{60^{\circ}}{4}$ from the top and the bott (c) 90 + 30 $\sqrt{3}$ mtr	n 1 (d) $\frac{1}{2}$ (d) $\frac{-4}{5}$ (d) 1 (d) (2, 3, 6) (d) (2, 3, 6) (d) $\frac{1}{2}$ (f the pole? (d) 75° (d) $\frac{1}{5}$ om of a tree are 30° and 45° (d) 60 + 30 $\sqrt{3}$ mtr
Q82. Q83. Q84. Q85. Q86. Q87. Q88. Q89. Q90. Q91.	Which of the following stater (a) Its value is 0 (c) Its value is less than 1 If $1 + \tan \theta = \sqrt{2}$, then what is (a) $\frac{1}{\sqrt{2}}$ If $\tan \theta = \underline{3}$ and θ is acute, the (a) $-\frac{3}{5}$ What is sin 25° sin 35° sec 65° (a) -1 Which one of the following the (a) $(3, 4, 5)$ A round balloon of unit radii distance of the centre of the ball (a) $1\sqrt{2}$ What is the angle of elevation (a) $\frac{1}{2}$ From the top of a building 9 respectively. What is the heige (a) $30\sqrt{3}$ mtr What is the area of a right and (a) 12 cm^2	the value of $\cot \theta - 1$? (b) $\sqrt{2}$ then what is the value of $\sin \theta$? (b) $\frac{3}{5}$ sec 55° equal to (b) 0 tiples does not represent the sides of (b) (4, 7, 10) us subtends an angle of 90 at the eva alloon from point A? (b) $\sqrt{2}$ the of the sum when the shadow of a performance of the sum when the shadow of a performance of the transformation of the transforma	on sin 31° + sin 32° ? (b) Its value is 1 (d) Its value is greater that (c) 2 (c) $\frac{4}{5}$ (c) $\frac{1}{2}$ a triangle? (c) (3, 6, 8) e of an observer standing at (c) 2 ole is $\sqrt{3}$ times the length of (c) $\frac{60^{\circ}}{4}$ from the top and the bott (c) 90 + 30 $\sqrt{3}$ mtr nuse is $6\sqrt{2}$ cm? (c) 24 cm ²	n 1 (d) $\frac{1}{2}$ (d) $\frac{-4}{5}$ (d) 1 (d) (2, 3, 6) (d) (2, 3, 6) (d) (2, 3, 6) (d) $\frac{1}{2}$ (f) the pole? (d) $\frac{1}{5}$ (d) $\frac{1}{5}$ (d) $\frac{1}{5}$ (d) $\frac{1}{5}$ (e) on of a tree are 30° and 45° (f) 60 + 30 $\sqrt{3}$ mtr (f) 36 cm ²
Q82. Q83. Q84. Q85. Q86. Q87. Q88. Q89. Q90. Q90. Q91. Q92.	Which of the following stater (a) Its value is 0 (c) Its value is less than 1 If $1 + \tan \theta = \sqrt{2}$, then what is (a) $\frac{1}{\sqrt{2}}$ If $\tan \theta = \underline{3}$ and θ is acute, th (a) $-\frac{3}{5}$ What is $\sin 25^{\circ} \sin 35^{\circ} \sec 65^{\circ}$ (a) -1 Which one of the following th (a) $(3, 4, 5)$ A round balloon of unit radii distance of the centre of the b (a) $1\sqrt{2}$ What is the angle of elevation (a) $\frac{1}{2}$ From the top of a building 9 respectively. What is the val (a) $\frac{1}{2}$ From the top of a building 9 respectively. What is the heig (a) $30\sqrt{3}$ mtr What is the area of a right and (a) 12 cm^2 The diameter of a circle circu	the value of $\cot \theta - 1$? (b) $\sqrt{2}$ then what is the value of $\sin \theta$? (b) $\frac{3}{5}$ sec 55° equal to (b) 0 iples does not represent the sides of (b) (4, 7, 10) us subtends an angle of 90 at the eye alloon from point A? (b) $\sqrt{2}$ the of the sum when the shadow of a per- (b) 45° ue of tan α ? (b) $\frac{1}{3}$ 0 mtr high, the angle of depression th of the tree? (b) 90 - $30\sqrt{3}$ mtr gled isosceles triangle whose hypoter (b) 18 cm ² mscibing a square is $15\sqrt{2}$ cm. then w	on sin 31° + sin 32°? (b) Its value is 1 (d) Its value is greater that (c) 2 (c) $\frac{4}{5}$ (c) $\frac{1}{2}$ a triangle? (c) (3, 6, 8) e of an observer standing at (c) 2 ole is $\sqrt{3}$ times the length of (c) $\frac{1}{4}$ from the top and the bott (c) 90 + 30 $\sqrt{3}$ mtr nuse is $6\sqrt{2}$ cm? (c) 24 cm ² vhat is the length of the side	n 1 (d) $\frac{1}{2}$ (d) $\frac{-4}{5}$ (d) 1 (d) (2, 3, 6) (d) (2, 3, 6) (d) (2, 3, 6) (d) $\frac{1}{2}$ (f) the pole? (d) $\frac{1}{5}$ om of a tree are 30° and 45° (d) $\frac{60}{5} + 30\sqrt{3}$ mtr (d) 36 cm ² e of the square?

Q93.	How many 200 mm lengths c (a) 50	can be cut from a 10 mtr of r (b) 40	ibbon? (c) 30	(d) 20
Q94.	The ratio of the outer and inr circle is?	ner perimeters of a circular	path is 23 : 22. If the path is	5 mtr wide, the diameter of the inner
	(a) 55 mtr.	(b) 110 mtr.	(c) 220 mtr.	(d) 230 mtr.
Q95.	The product of the lengths of (a) $5\sqrt{2}$ units	the diagonals of a square is (b) 5 units	s 50 square units. What is th (c) 10 units	the length of a side of the square? (d) $2\sqrt{5}$ units
Q96.	From a cylindrical log whose fraction of the original log whether the o	e height is equal to its diame hich is cut away?	eter, the greatest possible s	phere has been taken out. What is the
	(a) $\frac{1}{2}$	(b) $\frac{1}{3}$	(c) $\frac{1}{4}$	(d) $\frac{2}{3}$
Q97.	The diagonal of a cube is $4\sqrt{2}$ (a) 16 cu cm.	cm. what is its volume? (b) 32 cu cm.	(c) 64 cu cm.	(d) 192 cu cm.
Q98.	If the size of a cube is increas (a) 150%	sed by 100% then by what p (b) 200%	ercentage is the surface are (c) 300%	ea of the cube increased ? (d) 400%
Q99.	What is the least number of s (a) 1	traight lines for a bounded (b) 2	plane figure? (c) 3	(d) 4
Q100). There are five lines in a plane	e, no two of which are paral	lel. The maximum number	of points in which they intersect is ?
	(a) 4	(D) 6		(d) None of the above
			• . 0	
			E Y	
		(Y	
		. ×		
		X		
		4.		
		A		
	1			
	Z			

PART-II : ELEMENTARY MATHEMATICS ANSWER PRACTICE TEST PAPER - 1

51. (c) 17

Explanation:

$$21 \begin{array}{c} 59 \\ 42 \\ \hline 17 \\ \hline \end{array}$$

Remainder will be 17 when divided by 21.

52. (b) 2

Explanation:

$$\begin{array}{c}
13 \\
28 \\
26 \\
\hline
2
\end{array}$$

Remainder will be 2 when divided by 13.

53. (a) Prime Number

Explanation:

Given that N *is prime to* p, *that means* N *and* p *are two co-prime numbers.*

(Co-prime

number)

(integer)

with p being a prime

numbers

Since $(N^{(p-1)} - 1)$ is a multiple of p;

$$\therefore (N^{(p-1)}-1)=k\times p$$

 $\Rightarrow k = (N^{(p-1)} - 1)/p$

Let p = 5 and N = 2

:. $k = (2^4 - 1)/5 = 15/5 = 3$

That means the given condition satisfies.

Again take p = 4 and N = 3 (Co-prime numbers with pbeing a non-prime number) $\therefore k = (3^3 - 1)/4 = 26/4 = 6.5$ (Not a integer) That means the given condition does not satisfies. p must be a prime number only.

54. (a) 800

Explanation: Let HCF = x

$$LCM = 16 \times HCF$$

= 16x

LCM + HCF = 850

16x + x = 850

17x = 850

$$x = \frac{850}{17}^{50}$$

other number $16x = 16 \times 50 = 800$

55. (b) 1078

56.

57.

Explanation:

 $Product of two numbers = HCF \times LCM$

Product of two numbers = 98×2352

Explanation:		
1.625	0.1875	0.27
8)13.000(16)3.000 (11) 3.00 (
8	16	22
50	140	80
48	128	77
20	120	3
16	112	Clearly
40	80	It is non
40	80	terminating

It is terminating It is terminating

58. (b) $\frac{11}{14}$ Explanation: $\frac{7}{9} = 0.777$ $\frac{11}{14} = 0.78$ $\frac{3}{4} = 0.75$ $\frac{10}{13} = 0.76$

59. (c)
$$\sqrt{2} + \sqrt{7}$$

Explanation: $9 + 2\sqrt{14}$ $= 7 + 2 + 2 \times \sqrt{7} \times \sqrt{2}$ $= \sqrt{7}^{2} + \sqrt{2}^{2} + 2 \times \sqrt{7} \times \sqrt{2}$ $= (\sqrt{7} + \sqrt{2})^{2}$

60. (d) 69

Explanation

69 must be added to 1780 to make it a perfect square.

[45 + 5 = 50]

61. (c)
$$\frac{50}{3}$$

Explanation: $\frac{20}{100 + 20} \times 100$ $\frac{\frac{5}{20}}{120} \times 100 = \frac{50}{3}$

62. (b) 125

Explanation: Let maximum marks are x40% of x = 50

$$\frac{40}{100} \times 100 = 50$$
$$x = 50 \times \frac{25}{100} = 125$$

63. (c) 8

Explanation: Let x should be added $\frac{49 + x}{68 + x} = \frac{3}{4}$ 196 + 4x = 204 + 3x 4x - 3x = 204 - 196 x = 8

64. (b) 55

Explanation: Let ages of father and son be x and 75 - xTheir ages 5 years ago = x - 5, 75 - x - 5 = 70 - x (x - 5) (70 - x) = 750 $70x - x^2 - 350 + 5x = 750$

- $-x^{2} + 75x 350 750 = 0$ $-x^{2} + 75x 1100 = 0$ $x^{2} 75x + 1100 = 0$ $x^{2} 55x 20x + 1100 = 0$ x (x 55) 20 (x 55) = 0(x 20) (x 55) = 0x 55 = 0x = 55
- 65. (d) 22

66.

67.

Explanation: Let fourth proportional be x 7:11:14:x $7 \times x = 11 \times 14$ $x = \frac{11 \times 14}{7} = 22$ (c) 36 kg

Explanation: Let average weight of girls be x $\frac{15 \times 40 + 10 \times x}{15 + 10} = 38.4$ $600 + 10x = 38.4 \times 25$ $600 + 10x = \frac{384}{40_{21}} \times \frac{5}{25}$ 600 + 10x = 960

10x = 360x = 36

(b) 65 Explanation: Let average marks of girls be x No. of girls = 100 – 70 = 30

$$\frac{70 \times 75 + 30 \times x}{100} = 72$$

5250 + 30x = 7200
20 = 7200 = 5250

30x = 7200 - 5250

$$30x = 1950$$
$$x = \frac{4950}{300} = 65$$

68. (c) 12

Explanation: Let the numbers be x, 7 - x $x^{2} + (7 - x)^{2} = 25$ $x^{2} + 49 + x^{2} - 14x = 25$ $2x^{2} - 14x + 24 = 0$ $x^{2} - 7x + 12 = 0$

$$x^{2} - 3x - 4x + 12 = 0$$

$$x(x - 3) - 4(x - 3) = 0$$

$$(x - 3) (x - 4) = 0$$

$$x - 3 = 0 \quad x - 4 = 0$$

$$x = 3 \qquad x = 4$$

Numbers are = 3, 7 - 3
3, 4

 $Product = 3 \times 4 = 12$

69. (a) Rs 285

Explanation: Let the numbers be x

$$x + \frac{x \times 8 \times 3.5}{100} = 364.80$$

$$x + \frac{x \times 8 \times 35}{1000} = \frac{36480}{100}$$

$$x + \frac{28x}{100} = \frac{36480}{100}$$

$$\frac{128}{100} x = \frac{36480}{100}$$

$$x = \frac{36480}{100}$$

$$x = \frac{36480}{128}$$

 $\Rightarrow x = 285$

70.

Explanation: Let MP = x

(c) Rs 21

$$x \times \frac{80}{100} = 24$$
$$x = 24 \times \frac{100}{80} = 30$$
$$SP = 30 \times \frac{70}{100} = 21$$

71. (d) 50%

Explanation: Let MP = 100 SP = 75 $CP = \frac{15}{75} \times \frac{100}{125} = 60$ New SP = 90Profit = 90 - 60 = 30

$$Profit \% = \frac{\frac{1}{30}}{\frac{60}{2}} \times \frac{50}{100} = 50\%$$

Explanation:
$$5 \\ CP \text{ of } 1 \text{ orange} = \frac{1000}{1200} = ₹5$$

$$SP = 5 \times \frac{125}{100} = 6.25$$

No. of orangs = $\frac{10\theta}{6.25} = \frac{\frac{4}{100} \times \frac{4}{100}}{\frac{625}{.25}} = 16$

73. (d) 105 km.

74.

Explanation:

Time taken = 1PM – 10:40AM = 2hours 20 min.

$$= 2 \frac{\frac{1}{20}}{60} = \frac{7}{3} hrs.$$

Speed = 45 km/h.

$$= \frac{45}{3} \times \frac{7}{3} = 105 km.$$

(d) 1.5 km/h Explanation:

Let speed of stream in still water be x and speed of stream be y

$$\frac{32}{x+y} = 6$$

 $\frac{\frac{10}{32}}{\frac{1}{9}3}$... (1)

$$x - y$$

 $x - y = \frac{\frac{7}{14}}{\frac{6}{3}} \dots (2)$

 $<u>16}{=6}$ </u>

adding (1) & (2)

$$\begin{array}{rcl}
x + y &=& \frac{16}{3} \\
x + y &=& \frac{7}{3} \\
\hline
2x &=& \frac{23}{3} \\
\hline
x = & \frac{23}{6} \\
x + y = & \frac{16}{3} \\
\hline
\frac{23}{6} + y = & \frac{16}{3} \\
y = & \frac{16}{3} - & \frac{23}{3} = & \frac{32 - 23}{6} \\
\end{array}$$

$$=\frac{3\mathscr{B}}{\mathscr{B}_2}=1.5 \text{ km/h}$$

75. (b) 8 km Explanation:

$$\frac{d}{12} + \frac{d}{8} = \frac{5\emptyset}{6\emptyset}$$

$$\frac{2d+3d}{24} = \frac{5}{6}$$
$$\frac{5d}{24} = \frac{5}{6}$$
$$d = \frac{1}{6} \times \frac{24}{6} = 4$$

Total distance = 4 + 4 = 8 km

www.territorialarmy.in

76. (a) 1200

Explanation:

Work done in 1 day = 20 + 15 + 12 = 47Share of $C = \frac{12}{47} \times \frac{100}{4700} = 1200$

77. (c) 10

Explanation:

5 tractors can plough 5 hectares is 5 days

5 tractors can plough 50 hectares in 50 days

1 tractors can plough 10 hectares in 50 days

No. of tractors needed to plough 100 hectares = $\frac{100'}{10}$ = 10

78. (b) $3\sqrt{2}$

Explanation: $9\sqrt{2} - \sqrt{8} - 4\sqrt{2}$ $9\sqrt{2} - 2\sqrt{2} - 4\sqrt{2}$ $9\sqrt{2} - 6\sqrt{2} = 3\sqrt{2}$

79. (b) 10 m.

Explanation

Let height of tree be h

$$\frac{h}{25} = \frac{6}{15}$$
$$h = \frac{\frac{2}{6} \times 25^{5}}{\frac{15}{15}} = 10 m.$$

80.

Explanation Let number be x

(c) 15

$$\frac{x}{3} - \frac{x}{4} = 8$$
$$\frac{4x - 3x}{12} = 8$$
$$\frac{x}{12} = 8$$
$$x = 96$$

sum of digits = 9 + 6 = 15

81. (b) 35 Explanation Let units digit = xtens digit = 8 - xTwo digit number = 10(8 - x) + x= 80 - 10x + x= 80 - 9x*Number obtained on revering the digit* = $10 \times x + 8 - x$ = 9x + 880 - 9x + 18 = 9x + 898 - 8 = 18x90 = 18xx = 5Number = 80 - 9x $= 80 - 9 \times 5$ = 80 - 45 = 35 82. (d) Its value is greater than 1 Explanation $sin 31^{\circ} + sin 32^{\circ}$ $\sin 30^{\circ} = \frac{1}{2}$ So, $\sin 31^\circ > \frac{1}{2}$ $sin 32^{\circ} > \frac{1}{2}$ so sin 31° + sin 32° > 1 83. (b) √2 Explanation $1 + tan \theta = \sqrt{2}$ $1 + \tan \theta = \sqrt{2} - 1$ $\cot \theta = \frac{1}{\tan \theta} = \frac{1}{\sqrt{2} - 1}$ $=\frac{1}{\sqrt{2}-1} \times \frac{\sqrt{2}+1}{\sqrt{2}+1} = \sqrt{2}+1$ $\cot \theta - 1 = \sqrt{2} + 1 - 1 = \sqrt{2}$ (b) $\frac{3}{5}$ 84. Explanation $\tan \theta = \frac{3}{4}$ $x^2 = 3^2 + 4^2$ $x^2 = 9 + 16 = 25 = 5^2$ 3 *x* = 5 $\sin \theta = \frac{3}{x} = \frac{3}{5}$ 4 85. (d) 1 Explanation sin 25° sin 35° sec 65° sec 55° $\sin 25^{\circ} \sin 35^{\circ} \times \frac{1}{\cos 65^{\circ}} \times \frac{1}{\cos 55^{\circ}}$

$$-\cos 65^{\circ} \times -\cos 55^{\circ} \times \frac{1}{\cos 65^{\circ}} \times \frac{1}{\cos 55^{\circ}} = 1$$

86. (d) 2, 3, 6

Explanation

2, 3, 6

2 + 3 = 5 < 6

but sum of two sides is greater than third side

x

4500

θ

 $\sqrt{3}x$

30°

u-06

45°

60

87. (b) √2

Explanation

 $\angle 1 = \frac{90^{\circ}}{2} = 45^{\circ}$ In $\triangle OAP$ $\frac{OP}{AO} = \sin 45^{\circ}$ $\frac{1}{AO} = \frac{1}{\sqrt{2}}$ $OA = \sqrt{2}$

88. (a) 30°

> Explanation $tan = \frac{x}{\sqrt{3}x} = \frac{1}{\sqrt{3}}$ $tan \theta = tan 30^{\circ}$ $\theta = 30^{\circ}$

89. (d) ?

> Explanation: $\beta = 30^{\circ}$ Statement is not complete.

90. (b) ??

Explanation: Let height of tree be h

$$\frac{90}{3}$$
 = tan 45°

 $\frac{90}{x} = 1$

x = 90

$$\frac{90-h}{30} = \tan 30^{\circ}$$

$$\frac{90-h}{30} = \frac{1}{\sqrt{3}}$$

 $(90 - h) \sqrt{3} = 30$ $90\sqrt{3} - \sqrt{3}h = 30$ $90\sqrt{3} - 30 = \sqrt{3}h$ $h = \frac{90\sqrt{3} - 30}{\sqrt{3}}$

$$= \frac{90\sqrt{3} - 30}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$
$$= \frac{270 - 90\sqrt{3}}{3} = 90 - 10\sqrt{3}$$

All options are wrong.

91. (b) 18 cm²

92.

93.

Explanation:
Let base and height be x

$$x^{2} + x^{2} = (6\sqrt{2})^{2}$$

 $2x^{2} = 72$
 $x^{2} = 36$
 $x = 6$
In of $= \frac{1}{2} \times 6 \times 6 = 18cm^{2}$
(a) 15 cm

$$x$$
 $15\sqrt{2}$

х

6 √2

(a) 50 Explanation:

 $2x^2 = 450$

 $x^2 = 225$

 $x^2 = 15^2$

x = 15

Explanation: diameter= 15 cm

Let side of square be x $x^2 + x^2 = (15 \sqrt{2})^2$

 $10 meters = 10 \times 1000 = 10000 mm.$ Length of 1 piece = 200 mm. No. of pieces = $\frac{50}{10000^{-}} = 50$

94. (c) 220 m.

> Explanation: *Let outer and inner perimeters* = 23x *and* 22x $2\pi r_1 = 23x$ $2\pi r_2 = 22x$ $2\pi r_1 - 2\pi r_2 = x$ $r_1 - r_2 = \frac{x}{2\pi}$ $\frac{x}{2\pi} = 5$ $x = 10\pi$ $2\pi r_{2} - 22 \times 10 \pi$ $2\pi r_2 - 22 \times 10\pi$ $r_2 = \frac{\frac{ll}{22} \times 10}{\mathcal{X}_l} = 110m.$

Radious

 $Diameter = 2 \times radious$

$$= 2 \times 110 = 220 m$$

95. (b) 5
Explanation:

$$d^{2} = 50$$

 $2x^{2} = 25$
 $x = 5$
96. (b) $\frac{2}{3}$
Explanation:
 $h = 2r$
volume of sphere $= \frac{4}{3}\pi r^{3}$
 $fraction = \frac{2}{3}\frac{\pi}{2}rr^{3} - \frac{2}{3}$
97. (c) 64 cm³
 $\sqrt{3}$ side $= 4/3$
 $\sqrt{3}$ side $\sqrt{3}$
 $\sqrt{3}$
 $\sqrt{3}$ side $\sqrt{3}$
 $\sqrt{$