PRELIMINARY INTERVIEW BOARD
 TERRITORIAL ARMY COMMISSION : 28 JULY 2019 PAPER-1: REASONING \& ELEMENTARY MATHEMATICS

\qquad

(Please Read The Instructions Carefully) INSTRUCTIONS

1. Paper 1 has two parts: Part I \& Part II
(a) Part I : Reasoning (50 marks)
(b) Part II: Elementary Mathematics (50 marks)
2. Each section carries 50 objectives type of questions.
3. There will be four possible answers to every question. Candidates are required to fill correct answer in the OMR sheet with Black ball pen.
4. For each correct answer, 1 mark will be granted and 0.33 mark will be deducted for every wrong answer.
5. If a candidate gives more than one answer, it will be treated as a wrong answer and 0.33 mark will be deducted. There will be no penalty for questions left unanswered.
6. Candidates should not mark in the question paper. They can use blank pages provided in the question paper for rough work.
7. To be eligible to qualify, a candidate must obtain minimum 40% marks each in Part I \& II separately and a minimum of 50% aggregate in total.

PART-1: REASONING

Direction In each of the following question a number of series is given with one term missing. Choose the correct alternative that will continue the same pattern.

Q1. 2, 3, 5, 7, 11, \qquad 17
(a) 12
(b) 13
(c) 14
(d) 15

Explanation
The given series consists of prime numbers starting from 2. The prime number after 11 is $13 . S 0,13$ is the missing number.
Q2. 23, 48, 99, 203, 413 \qquad
(a) 927
(b) 837
(c) 937
(d) 437

Explanation
The pattern is $\times 2+2$ (prime number), $\times 2+3$ (next prime number), $\times 2+5$ (next prime number), $\times 2+7$ (next prime number), $\times 2+11$ (next prime number), So the series is $23 \times 2+2=48,48 \times 2+3=99$, $99 \times 2+5=203,203 \times 2+7=413,413 \times 2+11=837$. So the answer is 837

Q3. $225,336,447,558$, \qquad 7710
(a) 690
(b) 660
(c) 689
(d) 669

Explanation
The first two digits of the number in the given series are 22, 33, 44, 55, \qquad 77. The third digit of the number from the series 5, 6, 7, 8, ..., 10. So, the first two dibits of the missing number are 66 and the third digit is 9 . Hence the missing number is 669.

Q4. ABC, CAE, EZG, \qquad
(b) FAH (c) GYI
(d) FYH
(a) HUL

Explanation -

Q5. \qquad G \qquad C _G K \qquad P G \qquad
(a) К С P C P K
(b) C P K P C K
(c) P K C P K P
(d) C P P K C P

Explanation

The series is divided into group of four letters.

Direction Choose the correct alternative which shows the same relationship.
Q6. Menu : Food : : Catalogue : ?
(a) Rack
(b) Newspaper
(c) Library
(d) Books

Explanation
Menu lists all the food items in a restaurant. Similarly, catalogue is a list of all the books in a library.
Q7. 42 : 56 : : 110:?
(a) 182
(b) 132
(c) 136
(d) 156

Explanation
Clearly the relationship is $6 \times 7=42: 7 \times 8=56:: 10 \times 11=110: 11 \times 12=132$
Direction Choose the odd one out in question 8 to 11.
Q8. Find the odd one out.
Arrow, Axe, Knife, Sword
(a) Arrow
(b) Axe
(c) Knife
(d) Sword

Explanation
All except Arrow are used while holding in hand.
Q9. Find the odd one out.
Bake, Peel, Fry, Boil
(a) Bake
(b) Peel
(c) Fry
(d) Boil

Explanation
All except peel are forms of cooking.
Q10. Find the odd one out.
MONDAY, TUESDAY, FRIDAY, SUNDAY
(a) MONDAY
(b) TUESDAY
(c) FRIDAY
(d) SUNDAY

Explanation
All except Tuesday contain 6 letters.
Q11. Find the odd one out.
Ear, Lung, Eye, Heart, Kidney
(a) Ear
(b) Lung
(c) Eye
(d) Heart
Explanation
All except Heart are present in the humian body in a pair

Q12. If $\sqrt{\mathrm{AFI}}: 13:: \sqrt{\mathrm{DDA}}:$?
(a) 12
(b) 22
(c) 21
(d) 24

Explanation
$\sqrt{A F I}: 13:: \sqrt{D D A}: ?$
$\downarrow \downarrow \downarrow \quad \downarrow \downarrow \downarrow$
$\sqrt{169}: 13:: \sqrt{441}$: 21 Thus the code for DDA is $441=21 \times 21$.
Q13. If white is called blue, blue is called red, red is called yellow, yellow is called green, green is called black, black is called violet and violet is called orange, what would be the colour of human blood?
(a) Red
(b) Green
(c) Yellow
(d) Violet

Explanation
Human blood colour is 'red', but 'red' is called 'yellow'. So, human blood is 'yellow'.
Q14. In a certain code language, '324' means 'Light is bright', '629' means 'Girl is beautiful' and '4758' means 'I prefer bright colours', which digit means 'Light' in the language?
(a) 3
(b) 2
(c) 4
(d) 7

Explanation
As 3=light, 2=is, $4=$ bright, $6=$ girl, $2=i$ s, $9=$ beautiful, So, light $=3$.
Q15. A clock is so placed that at 12 noon its minute hand points toward North-east. In which direction does its hour hand point at 1.30 PM ?
(a) North
(b) South
(c) East
(d) West

Explanation

Clearly, the positions of the minute and hour hands at 12 noon and 1:30 p.m. are as shown in the diagram. So, as shown, the hour hand at 1:30 p.m. points towards the East.

Q16. In a class of 60 , the number of girls are twice that of boys. Kamal ranked seventeenth from the top. If there are nine girls ahead of Kamal, how many boys are behind him in rank?
(a) 3
(b) 7
(c) 12
(d) 23

Explanation
In a class of 60, the number of girls are twice that of boys. Clearly there are 20 boys and 40 girls.
Kamal rank is 17th, so the number of boys ranked ahead of Kamal if there are 9 girls ahead of him $=(17-9)=8$ the number of boys behind him in rank are $=(20-8)=12$
Q17. In a row of girls facing North, Reena is 10th to the left of Pallavi, who is 21 st from the right end. If Malini who is $17^{\text {th }}$ from left end, is fourth to the right of Reena, how many girls are there in the row?
(a) 37
(b) 43
(c) 44
(d) 16
Explanation

Pallavi is 21st from right and Reena is 10th to the left of Pallavi.
So, Reena is 31st from right.
Malini is 4th to the right of Reena.
So, Malini is 27 th from the right.
Also, Malini is 17th from the left.
Therefore number of girls in the row $=(26+$ Malini +16$)=43$
Q18. A is father of C and D is the son of B. E is the brother of A, C is the sister of D, how is B related to E ?
(a) Daughter
(b) Brother-in-law
(c) Husband
(d) Sister-in-law
Explanation
A is father of C and C is sister of D. So, A is father of D. But D is son of B. So, B must be mother of C and D and wife of A. Now as E is brother of A. So, B will be Sister-in-Law (Bhabhi) of E.
Q19. B is the husband of $P . Q$ is the only grandson of E, who is the wife of D and mother-in-law of P. How is B related to D ?
(a) Nephew
(b) Cousin
(c) Son-in-law
(d) Son
Explanation
B is the husband of P and E is mother-in-law of P. So, B, is the son of E. Also, E is wife of D. Thus, B is the son of D

Q20. Pointing to Kapil, Shilpa said, "His mother's brother is the father of my son Ashish." How is Kapil related to Shilpa?
(a) Sister-in-law
(b) Nephew
(c) Niece
(d) Aunt
Explanation
Father of shilpa's son is Shilpa's husband. So, Kapil is the son of Shipa's husband's sister. Thus, Kapil is Shilpa's nephew

Q21. A family has a man, his wife, their four sons and their wives. The family of every son also has 3 sons and one daughter. Find out the total number of male members in the whole family?
(a) 4
(b) 8
(c) 12
(d) 17

Explanation
Man himself $=1$, his 4 sons $=4$, all four son's have 3 sons each $(3 x 4)=12$. So total male members are $(1+4+12)=17$.
Q22. In certain Code DELHI is coded as 73541 and CALCUTTA as 82589662 , how can CALICUT be coded ?
(a) 5279431
(b) 5978213
(c) 8251896
(d) 8543691

Explanation
The alphabets are coded as follows : $D=7, E=3, L=5, H=4, I=1, C=8, A=2, U=9, T=6, \quad$ Thus, the code for CALICUT is 8251896.
Q23. If ACNE can be coded as 3-7-29-11, then BOIL will be coded as ?
(a) 5-29-19-27
(b) 5-29-19-25
(c) 5-31-21-25
(d) 5-31-19-25

Explanation

Every letter's position of alphabetical order is multiplied by two then added by one.
For example- $A=1 \times 2+1=3, C=3 \times 2+1=7, N=14 \times 2+1=29, E=5 \times 2+1=11$.
In the same way. $B=2 \times 2+1=5, O=15 \times 2+1=31, I=9 \times 2+1=19, L=12 \times 2+1=25$.
Q24. A, B, C, D and E are five friends. A is shorter than B but taller than E. C is the tallest. D is shorter than B and taller than A. Who has two persons taller and two persons shorter than him/ her ?
(a) A
(b) B
(c) C
(d) D

Explanation

Final ranking of height in descending order is as $C>B>D>A>F$. So D has two persons taller and two persons shorter than him.
Q25. If \times means -+ means $\div,-$ means \times and \div means + than
$15-2 \div 900+90 \times 100=$?
(a) 190
(b) 180
(c) 90
(d) -60

Explanation
Using the correct symbols we get expression given below
$15 \times 2+900 \div 90-100=-60$
Q26. If 'a' means 'plus', 'b' means 'minus', 'c' means 'multiplied by' and 'd' means 'divided by' then 18 c 14 a 6 b 16 d $4=$?
(a) 63
(b) 254
(c) 288
(d) 1208

Explanation
Using the correct symbols we get expression given below
$18 \times 14+6-16 \div 4=254$
Direction Consider the given statements to be true and decide which of the given conclusion/assumptions can definitely be drawn from the given statement.

Q27. Statements
(a) All goats are cows.
(b) All cows are animals

Conclusion

(I) All goats are animals.
(II) All animals are goats.
(a) Only conclusion I follows.
(b) Only conclusion IIfollows.
(c) Both conclusion I and II follows.
(d) Neither conclusion I nor II follows.

Explanation

Q28. Statements
(a) Some cats are dogs.
(b) No dog is a toy.

Conclusion

(I) Some dogs are cats.
(II) Some toys are cats.
(III) Some cats are not toys.
(a) Only conclusion I and III follows.
(IV) All toys are cats.
(c) Only conclusion I and II follows.
(b) Only conclusion II and III follows.

Explanation

Q29. 1.12.91 is the first Sunday. Which is the fourth Tuesday of December 91?
(a) 17.12.91
(b) 24.12.91
(c) 26.12.91
(d) 31.12 .91

Explanation
1.12.91 is the first Sunday of December 91. So, 3.12.91 is the first Tuesday of the month. Clearly, 10.12.91, 17.12.91, 24.12.91 and 31.12.91 are also Tuesdays. So, 24.12.91 is the fourth Tuesday.

Direction Each of the following problems (Q30 and 32), contains 4 figures marked (a), (b), (c), (d). Find the odd figure.

Q30.

(a)
(b)
(c)
(d)

Explanation
All lines out side the circle are in the same direction except figure (d).

Q31.

(a)
(b)
(c)
(d)

Explanation
Only one line is required to complete the figures (a), (b), (c), i.e. triangle rectangle pentagon and but two lines are required to complete the figure (d) i.e. hexagon

Q32.

(a)
(b)
(c)
(d)

Explanation
From arrow side fourth line is bigger than rest of the lines except in figure (a)

Direction Each of the problems (Q 33 to 36), contains four figures marked as (A), (B), (C), (D) and answer figures marked as (a), (b), (c) and (d). Select a figure from amongst the answer figures which will continue in the same series as given in the problem figure.

Q33. Find out the next figure

Q34. Find out the next figure

Arrow is moving clock wise and pin one is moving an anticlock wise.
Q35. Find out the next figure

Horizontal rectangle is moving and clockwise and vertical rectangle is moving anticlock wise.
Q36. What number must be added to 6,16 and 8 to get an average of 13 ?
(a) 22
(b) 25
(c) 20
(d) 18

Explanation
To get an average of 13 , total of four numbers must be $13 x 4=52$. Now total is $6+16+8=30 . S 0,52-30=22$ must be added to 6,16 , and 8 to get an average of 13

Q37. 10 cats caught 10 rats in 10 seconds. How many cats are required to catch 100 rats in 100 seconds?
(a) 100
(b) 10
(c) 20
(d) 50

Explanation
10 cats caught 10 rats in 10 seconds. It means one cat can catch one rat in 10 seconds. In 100 seconds one cat can catch 10 rats. So in 100 seconds 10 cats can catch 100 rats

Q38. Find the pair where relationship does not exist?
(a) Spoon, Water
(b) Glass, Juice
(c) Cup, Tea
(d) Knife, Fruit

Explanation

In all other pairs, we need first one when we have second one but we do not need spoon if we need to have water.
Q39. Which diagram depicts the correct relationship between Army, Navy and Air Force?
(a)

(b)

(c)

(d)

Explanation

Army, Navy and Air Force are different forces but having many common ventures.
Q40. Which diagram depicts the correct relationship?
Godavari, Brahamputra, Majauli
(a)

(b)

(c)

(d)

Explanation
Godavari and Brahamputra are two different rivers but Majuli is the river island of the river Brahmaputra.

Direction.

Q41. Find the letters?
COMPUTER : FQPRXVHT : : LANGUAGE : ?
(a) OXPIXDIG
(b) OCQICYIG
(c) OCQIXCJG
(d) OCIXCIG

Explanation
Every odd number letter of the word is moved three steps forward to obtain the corresponding letter of the code and every even number letter of the word is moved two steps forward to obtain the corresponding letter of the code.
$L+3=O, A+2=C, N+3=Q, G+2=I, U+3=X, A+2=C, G+3=J, E+2=G$.
Direction Study the figure and answer Q no. 42 and 43 .
Q42. How many maximum squares are in the following figure?

(a) 9

Explanation
14 Squares
Q43. Count the number of rectangles in the figure.

(a) 8
(b) 17
(c) 18
(d) 19
Explanation
18 Rectangles

Q44. A square sheet is folded along dotted lines and holes/ cuts are made as shown. O is hole that depicts how would paper look when unfolded completely?

Depicts Hole

Depicts Cut
(a)

(b)

Explanation

A square sheet is folded along dotted lines and holes/ cuts are made as shown. is hole is cut. Choose the diagram that depicts how would paper look when unfolded completely?

Q45. Fill up the missing number.

1	2	3
11	7	5
120	45	$?$

(a) 15
(b) $\mathbf{1 6}$
(с) 17Ω
(d) 18

Explanation

We could see the pattern as when we go to the first column as 1, 11, 120,
We observe that: $112-12$ means $121-1=120$
Similarly now we consider the second column and observe the same pattern as $2,7,45$,
$72-22$ means $49-4=45$
Now we consider the third column 3, 5, ?
Hence, the value in the missing place is calculated as:
$55-32$ means $25-9=16$
Hence, the missing number is: 16
Q46. Find the missing number.

(a) 25

Explanation
The rule is $3 \times 5+4=79 ; 5 \times 7+6=41 ; 4 \times 6+5=29$
\therefore the missing number is 41 . Hence, the answer is (c)
Q47. Find the missing number

12	6	3
16	8	4
128	$?$	2

(a) 64
(b) 130
(c) 16
(d) 256

Explanation
$12 / 2=6 \quad 6 / 2=3$
$16 / 2=8 \quad 8 / 2=4$
$128 / 8=16 \quad 16 / 8=2$

Q48. Fill up the missing letter and number.

A2	C4	E6
G3	I5	$?$
M5	O9	Q14

(a) L10
(b) K15
(c) J 15
(d) K8

Explanation
How the number is obtained $2+4=6,3+5=8$, (8 should be in the box) $5+9=14$.
Alternates of alphabet are taken $A_{-} C_{-} E_{-} G_{-} I_{-} K_{-} M_{-} O_{-} Q$ (K is to be in the box) So answer is K8

Q49. Fill up the missing number.

(a) 937

(b) 824

(c) 769

(d) 678

Explanation
In the first figure: $5 \times 1=5 ; 4 \times 2=8 ; 2 \times 2=4$
In the second figure: $2 \times 3=6 ; 3 \times 3=9 ; 2 \times 2=4$
\therefore In the third figure: $6 \times 1=6 ; 7 \times 1=7 ; 4 \times 2=8$
\therefore the answer is 678 i.e. (d).
Q50. From a meaningful word and answer as per given code.
D OREK
B A Y
12345
678
(a) 54367821
(b) 54826731
(c) 54862731
(d) 54862713

Explanation
D OREK BAY
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
So $54 \begin{array}{llllllllllllll} & 4 & 8 & 2 & 7 & 3 & 1\end{array}$ is $K E Y B O A R D$

PART-II : ELEMENTARY MATHEMATICS

Q51. Insert two rational numbers between $3 / 5$ and $2 / 3$.
(a) $\frac{21}{10}, \frac{10}{15}$
(b) $\frac{15}{20}, \frac{11}{12}$
(c) $\frac{19}{30}, \frac{37}{60}$
(d) $\frac{41}{20}, \frac{16}{25}$

Explanation
$\frac{3}{5}$ and $\frac{2}{3}$
$\frac{\frac{3}{5}+\frac{2}{3}}{2}=\frac{\frac{9+10}{15}}{2}=\frac{19}{30}$
[Rational Number a and $b==\frac{a+b}{2}$]
$\frac{\frac{3}{5}+\frac{19}{30}}{2}=\frac{\frac{18+19}{30}}{2}=\frac{37}{60}$
Q52. The rational number lying between $\sqrt{2}$ and $\sqrt{3}$ is
(a) $\frac{49}{28}$
(b) $\frac{56}{35}$
(c) $\frac{63}{45}$
(d) $\frac{85}{66}$

Explanation
$\sqrt{2}=1.414 \quad \sqrt{3}=1.732$
$\frac{49}{28}=1.75 \quad \frac{56}{35}=1.6$
$\frac{63}{45}=1.4 \quad \frac{85}{66}=1.287$
$\frac{56}{35}=1.6$ lies between $\sqrt{2}$ and $\sqrt{3}$
Q53. Find the value of :$\frac{5.49 \times 5.49 \times 5.49-1.49 \times 1.49 \times 1.49}{5.49 \times 5.49+5.49 \times 1.49+1.49 \times 1.49}$
(a) 2
(b) 4
(c) 6
(d) 8

Explanation

$\frac{5.49 \times 5.49 \times 5.49-1.49 \times 1.49 \times 1.49}{5.49 \times 5.49+5.49 \times 1.49+1.49 \times 1.49}$
$\frac{a^{3}-b^{3}}{a^{2}+b^{2}+a b}=a-b$
Here $\quad a=5.49 \quad b=1.49$
So $\quad a-b=5.49-1.49=4$
Q54. The numbers $\mathrm{X}, \mathrm{X}+2, \mathrm{x}+4$ are all prime numbers. What is the value of x ?
(a) 3
(b) 2
(c) 11
(d) 17

Explanation
Let the least value price be x.
Then the next value is $x+20$, and the next value is $x+40$ and on and on up to 7 values.
It's nothing but an arithmetic progression with sum 700 .
$x+x+20+x+40+\ldots x+120=700$
$7 x+(20+40+\ldots+120)=700$
$7 x+20(1+2+3+\ldots+6)=700$
$7 x+20(21)=700$
$7 x=280$
$\Rightarrow x=\frac{280^{40}}{71}=40$
Q55. How many factors of $2^{5} \times 3^{6}$ are perfect squares?
(a) 9
(b) 12
(c) 18
(d) 4

```
Explanation
\(2^{5} \times 3^{6}\)
    - \(2^{0} \cdot 3^{0}\)
    \(2^{1} \quad 3^{1}\)
                                Even powers of 2 can be selected in 3 ways and
    - \(2^{2} \cdot 3^{2}\)
        in the same way even powers of 3 can be selected in 4 ways ]
\(\cdot 2^{2} \cdot 3^{2}\)
    \(2^{3} \quad 3^{3}\)
    - \(2^{4} \quad\) • \(3^{4}\)
    \(2^{5} \quad 3^{5}\)
        - \(3^{6}\)
\(=3 \times 4=12\)
```

Q56. If $\sqrt[3]{\frac{x}{27}}=\frac{5}{3}$ than value of x is
(a) $\mathbf{1 2 5}$
(b) 25
(c) 27
(d) 9

Explanation
$\sqrt[3]{\frac{x}{27}}=\frac{5}{3}$
Cubing both side $3{\sqrt{\frac{x}{27}^{27}}}^{3}=\left(\frac{5}{3}\right)^{3}$
$\frac{x}{27}=\frac{125}{27} \quad x=125$
Q57. If sum of five consecutive integers is ' S ', then largest of these integers in terms of S will be :-
(a) $\frac{\mathrm{S}-10}{5}$
(b) $\frac{\mathrm{S}+4}{4}$
(c) $\frac{\rho+5}{4}$
(d) $\frac{\mathrm{S}+10}{5}$

Explanation
Let five consecutive integers be $x, x+1, x+2, x+3, x+4$
$x+x+1+x+2+x+3+x+4=S$
$5 x+10=S$
$5 x=S-10$
$x=\frac{S-10}{5}$
Largest number $=x+4=\frac{S-10}{5}+4$
$=\frac{S-10+20}{5}=\frac{S+10}{5}$
Q58. A number is an much greater than 36 as is less than 86 . Find the number.
(a) 61
(b) 71
(c) 81
(d) 51

Q59. The LCM of two numbers is 90 times their HCF. The sum of LCM and HCF is 1456 . If one of the number is 160 , then what is the other number?
(a) 120
(b) 136
(c) 144
(d) 184

Explanation

LCM	$=90 \times H C F$
Let HCF	$=x$
LCM	$=90 \times x=90 x$
LCM + HCF	$=1456$
$90 x+x$	$=1456$
$91 x$	$=1456$
x	$=\frac{1456}{91} H^{16}$

$x=16$
LCM $\quad=\quad 90 x=90 \times 16=1440$
HCF $\quad=\quad x=16$
One number $=160$
Let other number $=y$
Product of two numbers $=H C F \times L C M$
$160 \times y=16 \times 1440$
$y=\frac{16 \times 1440}{160}=144$

Q60. Find the square root of

$$
\frac{0.324 \times 0.64 \times 129.6}{0.729 \times 1.024 \times 36}
$$

(a) 4
(b) 3
(c) 2
(d) 1

Explanation
$\sqrt{\frac{0.324 \times 0.64 \times 129.6}{0.729 \times 1.024 \times 36}}$
$\sqrt{\frac{324 \times 64 \times 1296}{1000000} \times \frac{1000000}{729 \times 1024 \times 36}}$
$\sqrt{\frac{\frac{14324 \times 164 \times 129636}{729 \times 1024 \times 36}}{}}=1$
Q61. The duplicate ratio of $2 \sqrt{2}: 3 \sqrt{5}$ is?
(a) $4: 9$
(b) $8: 45$
Explanation
(c) $2: 3$
(d) $6: 45$

The duplicate ratio of $2 \sqrt{2}: 3 \sqrt{5}$
$(2 \sqrt{2})^{2}:(3 \sqrt{5})^{2}$
[Duplicate ratio of $a: b=a^{2}: b^{2}$]
$=8: 45$
Q62. Find out the value of x if $\log _{x} 4+\log _{x} 16+\log _{x} 64=12$
(a) 1
(b) 2
Explanation
$\log _{x} 4+\log _{x} 16+\log _{x} 64=12$
$\log _{x} 2^{2}+\log _{x} 2^{4}+\log _{x} 2^{6}=12$
$\left[\log a^{m}=m \log a\right]$
$2 \log _{x} 2+4 \log _{x} 2+6 \log _{x} 2=12$
$=12 \log _{x} 2=12$
$\log _{x} 2=\frac{12}{12}$
$\log _{x} 2=1$
$\log _{x} 2=\log _{x} x$
$\left[\log _{a} a=1\right]$
$2=x$
$x=2$
(c) 7
(d) 54

Q63. If $(a-b):(a+b)=1: 5$?
Then what is $\left(a^{2}-b^{2}\right):\left(a^{2}+b^{2}\right)$ equal to
(a) $6: 13$
(b) $4: 13$
(c) $5: 13$
(d) $8: 13$

Explanation
$a-b: a+b=1: 5$
$\frac{a-b}{a+b}=\frac{1}{5}$
$5 a-5 b=a+b$
[By cross multiplication]
$5 a-a=b+5 b$
$4 a=6 b$
$\frac{a}{b}=\frac{\frac{6}{3}^{3}}{4_{2}}$
$\frac{a}{b}=\frac{3}{2}$
$\frac{a^{2}-b^{2}}{a^{2}+b^{2}}=\frac{3^{2}-2^{2}}{3^{2}+2^{2}}=\frac{9-4}{9+4}=\frac{5}{13}=5: 13$

Q64. Find the value of x and y in the equation $\frac{3 x-y+1}{3}=\frac{2 x+y+2}{5}=\frac{3 x+2 y+1}{6}$
(a) $x=2, y=1$
(b) $x=1, y=1$
(c) $x=-1, y=-1$
(d) $x=2, y=1$

Explanation

$\frac{3 x-y+1}{3}=\frac{2 x+y+2}{5}=\frac{3 x+2 y+1}{6}$
Taking first two members of (1)
$\frac{3 x-y+1}{3}=\frac{2 x+y+2}{5}$
$5(3 x-y+1)=3(2 x+y+2)$
$15 x-5 y+5=6 x+3 y+6$
$15 x-5 y+5-6 x-3 y-6=0$
$9 x-8 y-1=0$
Taking last two members of (1)
$\frac{2 x+y+2}{5}=\frac{3 x+2 y+1}{6}$
$6(2 x+y+2)=5(3 x+2 y+1)$
$12 x+6 y+12=15 x+10 y+5$
$0=15 x+10 y+5-12 x-6 y-12$
$3 x+4 y-7=0$
Multiplycation (3) by (2)
$6 x+8 y-14=0$
adding (1) \mathcal{E} (2)

$9 x-8 y-1$	$=0$
$6 x+8 y-14$	$=0$
$15 x-15$	$=0$

$15 x=15$
$x=1$
Put $x=1$ in (2)
$9 \times 1-8 y-1=0$
$9-1=8 y$
$8 y=8$
$y=\frac{\frac{8}{8}}{-8} \quad y=1$
Q65. Three traffic lights change after 36 seconds, 42 seconds and 72 seconds respectively. If they are switched on now, after how much time will they blink together ?
(a) 8 min 24 sec
(b) $8 \min 4 \mathrm{sec}$
(c) $8 \min 44 \mathrm{sec}$
(d) 8 min 54 sec

Explanation
Three traffic lights will blink together after
$=$ LCM of $36 \mathrm{sec}, 42 \mathrm{sec}$ and 72 sec

2	$36-42-72$
2	$18-21-36$
2	$9-21-18$
3	$9-21-9$
3	$3-7-3$
7	$1-7-1$
	$1-1-1$

$$
\begin{aligned}
& L C M=2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 7 \times 1 \times 1=504 \mathrm{sec}=8 \min 24 \mathrm{sec} \\
& =504 \mathrm{sec}=\frac{504}{60} \min =8 \min 24 \mathrm{sec}
\end{aligned}
$$

Q66. The age of x is six times that of y. After 4 years, x is 4 times elder of y. What is the present age of y ?
(a) 4 years
(b) 5 years
(c) 6 years
(d) 7 years

Explanation
Let the present age of Raj be $3 x$ years
And the present age of Vipin $=2 x$ years
According to question
$\because(3 x-4)=(2 x-4)+6$
$\Rightarrow 3 x-4 \quad=2 x-4+6$
$\Rightarrow 3 x-4=2 x+2$
$\Rightarrow 3 x-2 x$
$=2+4$
$\therefore x$
$=6$
\therefore Present age of Vipin $=2 x$
$=2 \times 6=12$ years
Q67. One year ago ratio of age of Rohit and Sahil was $6: 7$, their ratio four years from now will be $7: 8$. How old is Sahil ?
(a) 40
(b) 39
(c) 37
(d) 36
Explanation
Let age of Rohit and Sahil one year age were $=6 x$ and $7 x$
Then their present ages will be $6 x+1$ and $7 x+1$
Their ages after 4 yrs
$=6 x+1+4,7 x+1+4$
$=6 x+5,7 x+5$
A.T.Q.
$\frac{6 x+5}{7 x+5}=\frac{7}{8}$
$8(6 x+5)=7(7 x+5)$
$48 x+40=49 x+35$
$40-35=49 x-48 x$
$5=x$
$x \quad=5$
Present age of Sahil $=7 x+1$
$=7 \times 5+1=35+1=36$

Q68. A fraction becomes $2 / 3$ if 1 is added to both its numerator and denominator. Same faction become $1 / 2$ if 1 subtracted both from its numerator; and denominator. The fraction is
(a) $4 / 7$
(b) $3 / 4$
(c) $3 / 5$
(d) $8 / 9$

Explanation
Let numerator $=x$ and denominator $=y$
Fraction
A.T.Q.
$\frac{x+1}{y+1}$

$3 x+3$
$=2 y+2$
$3 x-2 y$
$\frac{x-1}{y-1}$
$2 x-2$

$2 x-y$

Multiple (2) by 2
$4 x-2 y=2$
Sub (1) from (3)

$4 x-2 y$	$=$	2
$3 x-2 y$	$=$	-1
-	+	
x	$=$	3

$2 x-y=1$
$5=y$
$y=5 \quad \Rightarrow$ Fraction $=\frac{x}{y}=\frac{3}{5}$

Q69. A man sold two houses for ₹ 29,700 ,each. On one he incurred loss of 10%, while on other he gained 10%. The transaction gives:-
(a) Profit
(b) Neither profit nor loss
(c) Loss
(d) Insufficient data

Explanation
Let CP of first house $=x$
Loss \% = 10\%
Loss $=10 \%$ of $x=\frac{1 \varnothing}{10 \varnothing} \times x=\frac{x}{10}$
SP = CP - Loss
$=x-\frac{x}{100}$
$=\frac{-x}{10}=\frac{9 x}{10}$
$\frac{9 x}{10}=29700$
$x=29700 \times \frac{10}{9}=33000$
Let CP of second house $=y$
Profit \% = 10\%
Profit $=10 \%$ of $y=\frac{1 \varnothing}{10 \varnothing} \times y=\frac{y}{10}$
$S P=C P+$ Profit
$=y+\frac{y}{10}$
$=\frac{10 y+y}{10}=\frac{11 y}{10}$
$\frac{11 y}{10}=29700$
$y=29700 \times \frac{10}{11}=\begin{array}{r}2700 \\ 27000\end{array}$
$\begin{array}{rll}\text { Total } C P & = & x+y \\ & = & 33000+27000=60000 \\ \text { Total SP } & = & 29700+29700=59400\end{array}$
$C P>S P$
So it will be a loss.
Q70. The income of $A \& B$ are in the ratio of $4: 3$ and their annual expenses are in the ratio of $3: 2$. If each saves ₹ 60,000 . Find A's income?
(a) ₹ $\mathbf{2 , 4 0 , 0 0 0}$
(b) $=72,000$
(c) ₹ 19,200
(d) ₹ 48,000

Explanation
Let incomes of A and B be $4 x$ and $3 x$
$\frac{4 x-60000}{3 x-60000}=\frac{3}{2}$
$8 x-120000=9 x-180000$ [By cross multiplication]
$x=60000$
A's income $=4 x=4 \times 60000$

$$
=240000
$$

Q71. How long will it take for a boy to run around a square field of area 25 hectare at the speed of $10 \mathrm{~km} / \mathrm{h}$?
(a) $\mathbf{1 2} \mathbf{~ m i n}$
(b) 14 min
(c) 10 min
(d) 8 min

Explanation
Area of sq. field $=25$ hectare
$=250000 \mathrm{~m}^{2} \quad\left[1\right.$ hectare $\left.=10000 \mathrm{~m}^{2}\right]$
side $e^{2}=250000 \mathrm{~m}^{2}$
side $^{2}=(500 \mathrm{~m})^{2}$
side $=500 \mathrm{~m}$.
Perimeter of Sq field $=4 \times$ side $\quad \Rightarrow=4 \times 500$

$$
=2000 \mathrm{~m}=2 \mathrm{~km}
$$

Speed $=10 \mathrm{~km} / \mathrm{hr}$.
Time $=\frac{\text { Dis }}{\text { Speed }}$
$=\frac{2000}{10}=200$
$=\frac{\partial x}{1 \theta_{5}}=\frac{1}{5} \mathrm{hr} .=\frac{1}{5} \times 6 \theta^{12}=12$ minutes $\quad[1$ hour $=60$ minutes]
Q72. If the price of the cooking gas rises by 15%, by what $\%$, should family reduce its consumption so as not to exceed the budget on cooking?
(a) $12 \frac{1}{23} \%$
(b) $13 \frac{1}{23} \%$
(c) $14 \frac{1}{24} \%$
(d) None of the above

Explanation
Let price of working gas earlier $=100$
New price $=100+15=115$
$\%$ reduction is consumptions
$=\frac{15}{100+15} \times 100$
$=\frac{{ }^{3} \frac{15}{115}}{23} \times 100=\frac{300}{23}=13 \frac{1}{23} \%$
Q73. Population of a city in 2004 was $10,00,000$. If in 2005 , there is an increment of 15% in 2006 there is a decrease of 35% and in 2007 , there is an increase of 45%. Then find out the population of the city at the end of year 2007?
(a) 10,80,000
(b) $10,83,875$
(c) $10,84,874$
(d) $11,75,045$

Explanation
Populations of city in 2004
$=10,00,000$
in 2005 in increment \%
= 15%
in 2006 in increment $\%=35 \%$
in 2007 in increment $\%=45 \%$
Population at the end of $2007=$
$1000000\left(1+\frac{15}{100}\right)\left(1-\frac{35}{100}\right)\left(1+\frac{45}{100}\right)$
$=1000000 \times \frac{115}{100} \times \frac{65}{100} \times \frac{145}{100}=1083875$
Q74. A sum of money becomes 3 times in 5 years at simple interest. In how many years will the same sum become 6 times at the same rate of simple interest?
(a) 10 years
(b) 12 years
(c) 12.5 years
(d) 10.5 years

Explanation:
Let principal be P
Time $=5 y r s$
Amount $=3 \mathrm{P}$
S.P. $=$ Amount - Principa
$=3 P-P=2 P$
$\frac{P \times R \times T}{100}$
$\frac{P \times R \times 5}{100}=2 P$
$\frac{5 R}{100}=\frac{2 P}{P}$
$R=2 \times{\frac{100^{20}}{5}}^{20}$
$R=40 \%$
Let after t yrs it become 6 times
Amount $=6 P$
S.P. $=$ Amount - Principal

$$
=6 P-P
$$

$\frac{P \times R \times T}{100}=5 P$
$\frac{P \times 40 \times T}{100}=5 P$
$T=\frac{5 p \times 100}{p{ }^{25}} \underset{p_{8}}{4 \theta_{-}}=12.5$ years
Q75. A sum of money on compound interest amount to ₹ 9680 in 2 years and $₹ 10648$ in 3 years. What is the rate of interest per annum?
(a) 5%
(b) 10%
(c) 15%
(d) 20%

Explanation:
Let principal be P
$P\left(1+\frac{R}{100}\right)^{2}=9680$
$P\left(1+\frac{R}{100}\right)^{3}=10648$
Divide (1) and (2)
$\frac{P\left(1+\frac{R}{100}\right)^{3}}{P\left(1+\frac{R}{100}\right)^{2}}=\frac{10648}{9680}$
$1+\frac{R}{100}=\frac{11}{10}$
$\frac{R}{100}=\frac{1}{10}$
$R=\frac{1}{10} \times 10 \varnothing=10 \%$
Q76. Two numbers are less than third number by 30% and 37% respectively. The percentage by which second number is less than first is
(a) 10%
(b) 70%
(c) 4%
(d) 3%

Explanation
Let third number $=x$
First number $=\frac{70}{100} x$
Second number $=\frac{63}{100} x$
Difference of first and second number
$=\frac{70}{100} x-\frac{63}{100} x=\frac{7}{100} x$
\% by which second number is less than the first
$=\frac{\frac{7 x}{100}}{\frac{70}{100} x} \times 100$
$=\frac{7 x}{100} \times \frac{100}{\frac{10 x}{0 x}} \times 100=10 \%$
Q77. In a town of 3600 people, $8 / 9$ th population is men, 10% are married. Find the $\%$ of unmarried women?
(a) 24%
(b) 20%
(c) 25%
(d) 30%

Explanation
Population of men $=360^{\circ} \mathrm{C}$
No. of men $=\frac{8}{9}$ of $3600=3200$
$\%$ married men $=10 \%$

No. of married men $=10 \%$ of 3200

$$
=\frac{10}{100} \times 320 \theta=320
$$

No. of married women $=320$
Total no. of women $=3600-3200=400$
No. of unmarried women $=400-320=80$
$\%$ of unmarried women $=\frac{2080}{40 \theta} \times 10 \theta=20 \%$

Q78. Boating at $6 / 7$ th of regular speed in a lake, the tourist got late by 30 min ? How much time will it take when boating is at usual speed?
(a) 2 hr
(b) 3 hr
(c) 1.5 hr
(d) None

Explanation
Let distance be d and speed be s
Time $=\frac{d}{s}$
Time taken if he boats by $\frac{6}{7}$ of regular speed
$=\frac{d}{\frac{6}{7} s}$
A.T.Q.
$\frac{d}{\frac{6}{7} s}-\frac{d}{s}=30$
$\frac{7 d}{6 s}-\frac{d}{s}=30$
$\frac{d}{s}\left(\frac{7-6}{6}\right)=30$
$\frac{d}{s} \times \frac{1}{6}=30$
$\frac{d}{s}=30 \times 6$
$\frac{d}{s}=180$ minutes
180
$\frac{\text { min. }}{60 \text { min. }}=3 \mathrm{hrs}$.
Q79. A rectangle field of length 242 m has an area of 4840 m 2 . What will be the cost of fencing its perimeter if cost of fencing is
50 paise/meter?
(a) ₹ 262
(b) ₹ 270
(c) ₹ 320
(d) ₹ 258

Explanation
Length of rectangular field $=242 \mathrm{~m}$
Let breadth $=b \mathrm{~m}$.
Area $=4840 \mathrm{~m}^{2}$
$l \times b=4840 \mathrm{~m}^{2}$
$242 \times b=4840 \mathrm{~m}$
$b=\frac{4840^{20}}{242}$
$b=20 \mathrm{~m}$
Perimeter $=2(l+b)$

$$
\begin{aligned}
& =2(242+20) \\
& =2 \times 262=524 m .
\end{aligned}
$$

If cost of fencing on $1 \mathrm{~m}=50$ paise

$$
\text { Then cost of fencing on } 524 m=\frac{1}{2} ₹
$$

$$
=\frac{1}{z_{1}} \times 524=₹ 262
$$

Q80. The area of four walls of a room is $660 \mathrm{~m}^{2}$ and length is twice the width, ht being 11 m . Find area of ceiling?
(a) 200
(b) 190
(c) 210
(d) 220

Explanation

Let breadth $=x$

$$
\begin{aligned}
\text { length } & =2 x \\
\text { height } & =11 \mathrm{~m} .
\end{aligned}
$$

$$
\text { Area of four walls }(C . S . A)=2(l+b) \times h
$$

$$
\begin{aligned}
& =2(2 x+x) \times 11 \\
& =2 \times 3 x \times 11=66 x \\
& 66 x=660
\end{aligned}
$$

$$
x=\frac{\frac{66 \theta}{66}}{66} x=10
$$

$$
\begin{aligned}
\text { Area of ceiling } & =l \times b \\
& =2 x \times x=2 x^{2} \\
& =2 \times x \times x=2 \times 10 \times 10=200 \mathrm{~m}^{2}
\end{aligned}
$$

Q81. Ratio of two complementary angles is $1: 5$. What is the difference between them?
(a) 60°
(b) 90°
(c) 120°
(d) 160°

Explanation
Let two angles be x and $5 x$
$5 x+x=90^{\circ}$
[sum of complementary angles is 90°]
$6 x=90^{\circ}$
$x=\frac{90^{15^{\circ}}}{6}$
$x=15^{\circ} \quad \Rightarrow$ Difference $=5 x-x=4 x$
$\Rightarrow=4 \times 15^{\circ}=60^{\circ}$
-
(d) 160°

Q82. If a man travels with a speed of $2 / 5$ times of his original speed and he reached his office 15 minutes late to the fixed time, then the time taken with his original speed will be?
(a) $\mathbf{1 0} \mathbf{~ m i n}$
(b) 15 min
(c) 20 min
(d) 25 min

Explanation
Let speed of man $\quad=x \mathrm{~km} / \mathrm{h}$
New speed $=\frac{2}{5} x \mathrm{~km} / \mathrm{h}$

Let Distance $=d$
Time $=\frac{\text { Distance }}{\text { Speed }}$
According to condition
$\frac{d}{\frac{2}{5} x}-\frac{d}{x}$ $=15$
$\frac{d}{x} \times \frac{5}{2}-\frac{d}{x}=15$
$\frac{d}{x}\left(\frac{5}{2}-1\right)=15$
$\frac{d}{x} \times \frac{3}{2}=15$
$\frac{d}{x}=\frac{5}{15} \times \frac{2}{3} \quad \Rightarrow \frac{d}{x}=10$
Time taken when he goes with his original speed $=10$ minutes
Q83. Find the value of x in the given figure where PA is parallel to QC

(a) 75°
(b) 185°
(c) 285°
(d) 245°

Explanation

Draw DE\|PA\|QC
$P A|\mid D E$ and $A E$ is transliteration
$45^{\circ}+\angle 1=180^{\circ}$ (co interior angle)
$\angle 1=180^{\circ}-45^{\circ}$
$\angle 1=135^{\circ}$
$\mathrm{DE} \|$ QC and $C E$ is transverses
$\angle 2+30^{\circ}=180^{\circ}$ (co interior angle)

$\angle 2=150^{\circ}$
$x=\angle 1+\angle 2=135^{\circ}+150^{\circ} \Rightarrow x=285^{\circ}$
Q84. The speed of boat upstream and speed of boat down stream are $7 \mathrm{~km} / \mathrm{h}$ and $13 \mathrm{~km} / \mathrm{h}$ respectively. What is the speed of stream and speed of boat in still water?
(a) $10 \mathrm{~km} / \mathrm{h}$ and $3 \mathrm{~km} / \mathrm{h}$
(b) $15 \mathrm{~km} / \mathrm{h}$ and $9 \mathrm{~km} / \mathrm{h}$
(c) $20 \mathrm{~km} / \mathrm{h}$ and $6 \mathrm{~km} / \mathrm{h}$
(d) $40 \mathrm{~km} / \mathrm{h}$ and $12 \mathrm{~km} / \mathrm{h}$

Explanation

Let speed of boat in still water $=x \mathrm{~km} / \mathrm{h}$
Speed of stream $=y \mathrm{~km} / \mathrm{h}$
Speed of boat downstream $=(x+y) \mathrm{km} / \mathrm{h}$
Speed of boat upstream $=(x-y) \mathrm{km} / \mathrm{h}$
$x+y=13$
$x-y=7$
adding (1) \mathcal{E} (2)

$$
\begin{array}{rlc}
x+y & = & 13 \\
x-y & = & 7 \\
\hline 2 x & = & 20 \\
\hline
\end{array}
$$

$x=\frac{20}{2}$
$x+y=13$
$10+y=13$
$y=13-10=3 \mathrm{~km} / \mathrm{h}$
Q85. Ajay can do a piece of work in 10 days and Harshal can do same work in 12 days. They started working together but Ajay left the work 2 days before completion of work, then time taken to complete the work?
(a) $6 \frac{6}{11}$ days
(b) $5 \frac{3}{10}$ days
(c) $4 \frac{3}{2}$ days
(d) $7 \frac{2}{5}$ days

Explanation
No. of days taken by Ajay $=10$ days
No. of days taken by Harshal $=12$ days
Unit of work done in last 2 days
by Harshal $=2 \times 5=10$
Unit of work done $=60-10=50$
No. of days taken together $=\frac{50}{6+5}=\frac{50}{11}=4 \frac{6}{11}$

Total days $=4 \frac{6}{11}+2 \bumpeq 6 \frac{6}{11}$
Q86. If 3 men or 4 women can plough a field in 43 days, how long 7 men and 5 women take to plough it?
(a) 3 days
(b) 7 days
(c) $\mathbf{1 2}$ days
(d) 15 days

Explanation
According to Question
$3 M=4 W$
$\frac{M}{W}=\frac{4}{3}$
Ratio of efficiency of Man and woman $=4: 3$
Work done by 1 man in 1 day $=3$ unit
Total units of work $=43 \times 3 \times 4$
No. of days taken by 7 men and 5 women
$=\frac{43 \times 3 \times 4}{7 \times 4+5 \times 3}$
$=\frac{43 \times 3 \times 4}{28+15}=\frac{43 \times 3 \times 4}{43}=12$ days

Q87. A can do a piece of work in 70 days and B is 40% more efficient than A. The number of days taken by B to do the same work will be?
(a) 40 days
(b) 60 days
(c) 50 days
(d) 45 days

Explanation
Efficiency of A $=100$
Efficiency of $B \quad=100+40=140$
$A: B=100: 14 \theta=5: 7$
Total work $=5 \times 70=350$
No. of days taken by B=$\frac{35 \theta^{50}}{7}=50$

$\left[\frac{\text { Total work }}{\text { Efficiency of B }}=\right.$ No. of days taken by B $]$
Q88. A wooden box measures 10 cm by 6 cm by 5 cm . Thickness of wood is 2 cm . Find the volume of wood required to make
the box.
(a) $206 \mathrm{~cm}^{3}$
(b) $207 \mathrm{~cm}^{3}$
(c) $204 \mathrm{~cm}^{3}$
(d) $288 \mathrm{~cm}^{3}$

Explanation
Outer length
$=10 \mathrm{~cm}$
Outer breadth $=6 \mathrm{~cm}$
Outer height $=5 \mathrm{~cm}$
Outer volume $=\quad l \times b \times h$
$=10 \mathrm{~cm} \times 6 \mathrm{~cm} \times 5 \mathrm{~cm}=300 \mathrm{~cm}^{3}$
Inner length
$=10-(2+2)=10-4=6$
Inner breadth $\quad=\quad 6-(2+2)=6-4=2$
Inner height
$=5-(2+2)=5-4=1$
Inner volume $\quad=\quad l \times b \times h$
$=\quad 6 \mathrm{~cm} \times 2 \mathrm{~cm} \times 1 \mathrm{~cm}=12 \mathrm{~cm}^{3}$
Volume of wood $=\quad$ Outer volume - Inner volume
$=300 \mathrm{~cm}^{3}-12 \mathrm{~cm}^{3}$
$=288 \mathrm{~cm}^{3}$
Q89. What is the value of
$\tan \mathrm{A}-\sin \mathrm{A}$
(a) $\frac{\sec \mathrm{A}}{1-\cos \mathrm{A}}$
(b) $\frac{\sec A}{1+\cos ^{2} A}$
(c) $\frac{\sec \mathrm{A}}{1+\cos \mathrm{A}}$
(d) None of these

Explanation
$\frac{\tan A-\sin A}{\sin ^{3} A}$
$\frac{\frac{\sin A}{\cos A}-\frac{\sin A}{\sin ^{3} A}}{}$
$\frac{\sin A(\sec A-1)}{\sin ^{3} A}$
$\frac{\sin A(1-\cos A)}{\cos A \sin ^{2} A}$
$=\frac{1-\cos A}{\cos A \sin ^{2} A}$
$=\frac{1-\cos A}{\cos A\left(1-\cos ^{2} A\right)} \quad\left[\sin ^{2} \theta=1-\cos ^{2} \theta\right]$
$=\frac{1-\cos A}{\cos A(1-\cos A)(1+\cos A)}$
$=\frac{1}{\cos A(1+\cos A)}=\frac{\sec A}{1+\cos A}$
Q90. The length of a pendulum is 60 cm . The angle through which it swings when its tip describes an arc of length 16.5 cm will be
(a) $15^{\circ} 30^{\prime}$
(b) $15^{\circ} 45^{\prime}$
(c) $16^{\circ} 15^{\prime}$
(d) $16^{\circ} 45^{\prime}$

Explanation
Length of pendulum (radius) $=60 \mathrm{~cm}$
Length of arc $(l)=16.5 \mathrm{~cm}$.
$l=r \theta$
$16.5=60 \times \theta$
$\frac{16.5}{60}=\theta$
$\theta=\frac{16555^{\prime \prime}}{\frac{60 \times 10}{2 \theta_{4}}}=\frac{11}{40}$
$=\frac{11}{40} \times \frac{180}{\pi} \quad \Rightarrow\left(1\right.$ radian $\left.=\frac{180}{40}\right)$
$=\frac{111}{2^{40}} \times 180 \times \frac{7}{22} \quad \Rightarrow=\frac{63}{4}=15^{\circ} 45^{\prime}$
Q91. Find the value of . ${ }^{2}$
$\frac{\sin \theta}{\cos \left(90^{\circ}+\theta\right)}+\frac{\sin \theta}{\sin \left(180^{\circ}+\theta\right)}+\frac{\tan \left(90^{\circ}+\theta\right)}{\cot \theta}$
(a) 0
(b) -1
(c) -3
Explanation
$\frac{\sin \theta}{\cos \left(90^{\circ}+\theta\right)}+\frac{\sin \theta}{\sin \left(180^{\circ}+\theta\right)}+\frac{\tan \left(90^{\circ}+\theta\right)}{\cot \theta}$
$\left[\begin{array}{c}\cos \left(90^{\circ}-\theta\right)=\sin \theta \\ \sin \left(90^{\circ}-\theta\right)=\cos \theta \\ \tan \left(90^{\circ}-\theta\right)=\cot \theta\end{array}\right]$
$\frac{\sin \theta}{-\sin \theta}+\frac{\sin \theta}{-\sin \theta}-\frac{\cot \theta}{\cot \theta}$
$-1-1-1=-3$

Q92. In the given figure, O is the centre of a circle and diameter AB bisects and chord CD at a point E such that $\mathrm{CE}=\mathrm{ED}=8 \mathrm{~cm}$ and $E B=4 \mathrm{~cm}$. The radius of circle is
(a) $\mathbf{1 0 ~ c m}$
(b) 12 cm
(d) 8 cm
Explanation
$A E \times E B=D E \times E C$
$A E \times 4=8 \times 8$
$A E=\frac{8 \times}{16^{-4}}$
$A E=16$
$A E=16$

> | In a circle if |
| :--- |
| two chords |
| intersect at a |
| point them |
| $a \times b=x \times y$ |

$A B=16+4$
$\begin{aligned} & =20 \mathrm{~cm} \\ A O & =\frac{A B}{2}=\frac{20}{2}=10 \mathrm{~cm}\end{aligned}$

Q93. In a triangle $A B C$, if $\cos A=\cos B \times \cos C$, What is the value of $\tan A-\tan B-\tan C$.
(a) -1
(b) 0
(c) $1+\tan \mathrm{A}+\tan \mathrm{B}+\tan \mathrm{C}$
(d) $\tan \mathrm{A} \tan \mathrm{B} \tan \mathrm{C}-1$

Explanation
$\cos A=\cos B \times \cos C$
$A+B+C=180^{\circ}\left(\right.$ sum of Δ of $\left.\Delta 180^{\circ}\right)$
$B+C=180^{\circ}-A$
$\sin (B+C)=\sin \left(180^{\circ}-A\right)$
$\sin (B+C)=\sin A$
we are given
$\cos B \times \cos C=\cos A$
$\tan A-\tan B-\tan C$
$\tan A-(\tan B+\tan C)$
$\tan A-\left(\frac{\sin B}{\cos B}+\frac{\sin C}{\cos C}\right)$
$\tan A-\left(\frac{\sin B \cos C+\sin C \cos B}{\cos B \cos C}\right)$
$\tan A-\frac{\sin (B+C)}{\cos B \cos C}$
$[\sin (x+y)=\sin x \cos y y+\cos x \sin y]$
$\tan A-\frac{\sin A}{\cos A}$
$\left[\begin{array}{cc}\sin (B+C)=\sin A & \text { (Proved) } \\ \cos B \cos C=\cos A & \text { (Given) }\end{array}\right]$
$\tan A-\tan A=0$
Q94. An aeroplane flying at a height of 300 m above the ground passes yertically above a plane at an instant when the angle of elevation of two planes from the same point on the ground are 60° and 45° respectively. What is the height of lower plane from ground ?
(a) 500 m
(b) $100 \sqrt{3} \mathrm{~m}$
(c) $500 \sqrt{3} \mathrm{~m}$
(d) $15(\sqrt{3}+1) \mathrm{m}$

Explanation
Let $A \mathcal{E} B$ be the two aeroplanes
$B C=300 \mathrm{~m}$
Let $A C=h$ meters
$C D=x$
In $\triangle A C D$ In $\triangle B C D$

$x=\frac{300}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$
$=\frac{\begin{array}{l}100 \\ 300 \\ 3 \\ 3\end{array}}{3}=100 \sqrt{3}$
From (1) $h=x$
$h=100 \sqrt{3}$
height of lower ground $=100 \sqrt{3} \mathrm{~m}$
Q95. The mean of 20 observations is 15 . On checking it was found that two observations were wrongly copied as 3 and 6 . If wrong observation are replaced by correct values 8 and 4 , then the correct mean is?
(a) 15
(b) $\mathbf{1 5 . 1 5}$
(c) 15.35
(d) 16

Explanation
Incorrect sum of 20 observations
$15 \times 20=300$
[Sum $=$ Mean \times Sum of observation $]$
Correct Sum of observation
$=300-(3+6)+(8+4)$
$=300-9+12=312-9=303$
Correct mean $=\frac{\text { Correct sum }}{\text { Number of observations }} \Rightarrow=\frac{303}{20}=15.15$
Q96. Two poles of equal height are standing opposite to each other on either side of a road which is 100 m wide from a point between them on ground. The angle of elevation of tops of poles are 30° and 60°. The height of each pole in metres will be?
(a) $25 \sqrt{3}$
(b) $20 \sqrt{3}$
(c) $28 \sqrt{3}$
(d) $30 \sqrt{3}$

Explanation
Let $A B=C D=h$ meters be the height of poles
$B D=100 \mathrm{~m}$
Let $B E=x$, then $E D=100-x$
In $\triangle A B E$
$\frac{A B}{B E}=\operatorname{tam} 60^{\circ}$

$\frac{h}{x}=\sqrt{3}$
$h=\sqrt{3} \quad x$
In $\triangle C D E$
$\frac{C D}{D E}=\operatorname{tam} 30^{\circ}$
$\frac{h}{100-x}=\frac{1}{\sqrt{3}}$
$h=\frac{100-x}{\sqrt{3}} \ldots$ (2)
From (1) E (2)
$\sqrt{3} x=\frac{100-x}{\sqrt{3}}$
$3 x=100-x$
$3 x+x=100$
$4 x=100$
$x={\frac{100^{25}}{4}}^{25}=25$
Put value of x in (1)
$h=\sqrt{3} x$
$=\sqrt{3} \times 25=25 \sqrt{3}$
Q97. An electric pump can fill a tank in 3 hours. Because of a leak in tank it took 3.5 hours to fill the tank. If tank is full, how much time will it take for leak to empty it?
(a) 25 hrs
(b) 19 hrs
(c) 20 hrs
(d) 21 hrs

Explanation
Time taken by electric pump to fill the tank $=3 \mathrm{hrs}$
Because of leak tank took $=3.5 \mathrm{hrs}=\frac{7}{2} \mathrm{hrs}$
Electric pump's efficiency $=7$
Pump's efficiency after leakage $=6$
Leakage efficiency $=7-6=1$
Time taken to empty it $=\frac{21}{1}=21 \mathrm{hrs}$

Q98. A spherical ball of radius 3 cm is melted and recast into three spherical balls of radius 1.5 cm and 2 cm and $X \mathrm{~cm}$. Find the value of X.
(a) 5 cm
(b) 2.5 cm
(c) 3 cm
(d) 2.25 cm

Explanation
Radius of I ball $\quad=3 \mathrm{~cm}$
Volume of I ball $\quad=\frac{4}{3} \pi(3)^{3}$
[Volume of sphere $\quad=\frac{4}{3} \pi r^{3}$]
Radius of II ball $\quad=1.5 \mathrm{~cm}$
Volume of II ball $\quad=\frac{4}{3} \pi(1.5)^{3}$
Radius of III ball $\quad=2 \mathrm{~cm}$
Volume of III ball $\quad=\frac{4}{3} \pi(2)^{3}$
Radius of IV ball $\quad=x \mathrm{~cm}$

Volume of IV ball $\quad=\frac{4}{3} \pi(x)^{3}$
ATQ:-
$\frac{4}{3} \pi(1.5)^{3}+\frac{4}{3} \pi(2)^{3}+\frac{4}{3} \pi(x)^{3}=\frac{4}{3} \pi(3)^{3}$
$\frac{4}{3} \pi(1.5)^{3}+2^{3}+x^{3}=\frac{4}{3} \pi \times 27$
$3.375+8+x^{3}=27$
$11.375+x^{3}=27$
$x^{3}=27-11.375$
$x^{3}=2.5^{3} \quad \Rightarrow x=2.5$
Q99. Circumference of the base of a 9 m high conical tent is 44 m . Find the vol of air contained in it.
(a) $430 \mathrm{~cm}^{3}$
(b) $462 \mathrm{~cm}^{3}$
(c) $472 \mathrm{~cm}^{3}$
(d) $492 \mathrm{~cm}^{3}$

Explanation

Base of conical tent $=44$
$2 \pi r=44$
$2 \times \frac{22}{7} \times r=44$
$r=\frac{1}{44} \times \frac{1}{2} \times \frac{7}{22}=7$
height $=9 \mathrm{~m}$
Volume $=\frac{1}{3} \pi r^{2} h \quad \Rightarrow=\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times 7=462 \mathrm{~cm}^{3}$
Q100. The average marks obtained by the students in a class are 43 . If the average marks obtained by 25 boys are 40 and average marks obtained by the girl students are 48 , then what is the number of girl students in the class?
(a) 20
(b) 25
(c) 15
(d) 10

Explanation
Let number of girls be x.
Average marks obtained by girls $=48$
Total marks of girls $=$ Average \times No. of girls
$48 \times x=48 x$
Total no. of boys $=25$
Average marks obtained by boys $=40$
Total marks of boys $=25 \times 40=1000$
Average marks of whole class $=43$
Total students $=x+25$
Total marks of whole class $=43(x+25)$
Total marks of boys and girls $=1000+48 x$
A.T.Q.
$1000+48 x=43(x+25)$
$1000+48 x=43 x+1075$
$48 x-43 x=1075-1000$
$5 x=75$
$x=\frac{75}{5}{ }^{15}$
No. of girls $=15$

ANSWERS ARE BOLD

